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Abstract. We consider the two-Higgs-doublet model with explicit CP -violation, where the effective Higgs
potential is not CP -invariant at the tree level. The three neutral Higgs bosons of the model are the
mixtures of CP -even and CP -odd bosons which exist in the CP -conserving limit of the theory. The mass
spectrum and tree-level couplings of the neutral Higgs bosons to gauge bosons and fermions are significantly
dependent on the parameters of the Higgs boson mixing matrix. We calculate the Higgs–gauge boson,
Higgs–fermion, triple and quartic Higgs self-interactions in the MSSM with explicit CP -violation in the
Higgs sector and CP -violating Yukawa interactions of the third generation scalar quarks. In some regions
of the MSSM parameter space substantial changes of the self-interaction vertices take place, leading to
significant suppression or enhancement of the multiple Higgs boson production cross sections.

1 Introduction

A general interest in the models with two (and more)
Higgs doublets is maintained by the absence of a con-
vincing argument in favor of only one generation of Higgs
bosons when there are three known generations of fun-
damental fermions. Models with an extended Higgs sec-
tor provide richer physical possibilities than the standard
scheme with one doublet. One of them is the possibility to
introduce CP -violation beyond the Cabibbo–Kobayashi–
Maskawa (CKM) mechanism, by means of the Higgs boson
exchange amplitudes with complex Higgs boson–fermion
vertices. Complex couplings can be generated either spon-
taneously [1], when the vacuum expectation values of the
Higgs fields are complex and the couplings of the CP -
invariant tree-level Higgs potential are real, or explicitly
inserted [2] on the level of SU(2) × U(1)-invariant poten-
tial terms, when the complex vacuum expectation values
of the scalar fields correspond to the minimum of the her-
mitian potential with complex parameters, which is not
CP -invariant (CP -invariance softly broken by the mass
terms).

Various representations of the SU(2) ×U(1)-invariant
two-doublet Higgs potentials have been considered in the
literature. The two-doublet models with spontaneous CP -
violation [1,3] make use of the potential of the general
structure −µ2ϕ2 + λϕ4 without the dimension two µ2

12-
terms. Models with explicit CP -violation use either the
potential with trivial minimization [2,4], or the potential
with complex parameter µ2

12 of the dimension two terms
and complex parameters λ̄5, λ̄6 and λ̄7 in front of the di-
mension four potential terms [5,6], similar to the effective

potential of the minimal supersymmetry (MSSM). The
standard transformation (diagonalization) procedure from
the level of primary fields which are the components of
scalar doublets in SU(2) ×U(1)-invariant potential terms
(SU(2) × U(1) eigenstates) to the physical fields (mass
eigenstates) of the Higgs bosons should be consistently
performed to respect the SU(2) × U(1) invariance and
the minimization of the potential. We consider the di-
agonalization for the two different two-Higgs-doublet po-
tential forms in great detail. A special case of the gen-
eral two-Higgs-doublet model is represented by the Higgs
sector of MSSM. Substantial radiative corrections to the
Higgs boson masses and couplings are induced at the mZ

scale mainly by the third generation quarks t, b and the
third generation scalar quarks [7]. In the special case of
MSSM the multiparameter space of the general two-Higgs-
doublet model is significantly reduced, providing possibili-
ties of much less ambiguous phenomenological predictions.

Phenomenological consequences of the CP -violating
Higgs–third generation squark Yukawa interactions in the
Higgs–fermion and the Higgs–gauge boson sectors have
been considered in [5]. We focus mainly on the self-inter-
actions of the Higgs bosons. Experimental observation of
the scalar boson signals should be followed by the verifi-
cation of the Higgs mechanism as the essence of the gauge
boson and fermion mass generation. Self-interactions of
the Higgs fields lead to a non-trivial structure of the vac-
uum state with non-zero (and possibly complex) field ten-
sions, initializing the spontaneous breakdown of SU(2) ×
U(1) symmetry. The reconstruction of the Higgs self-inter-
action potential from the data on multiple (mainly double
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and triple) Higgs boson production cross sections [8] re-
quires the experimental measurements of triple and quar-
tic Higgs boson self-interaction vertices, which is a non-
trivial but valuable task for future high luminosity collid-
ers, such as LHC and TESLA.

In Sect. 2 we discuss the diagonalization of the CP -
invariant Higgs potential, represented in two different
forms, in the general two-Higgs-doublet model (THDM),
and we consider the special case of the Higgs sector in min-
imal supersymmetry (MSSM). In Sect. 3 we introduce the
complex parameters of the SU(2)×U(1) invariant poten-
tial terms and discuss the diagonalization of the THDM
potential which acquires explicit CP -violation. In Sects. 4
and 5 we calculate the Higgs–gauge boson, Higgs–fermion
and Higgs self-couplings in the MSSM with CP -violation.

2 Diagonalization of the mass matrix
in the general two-Higgs-doublet model

Two representations have been used for the two-doublet
Higgs potential. The first representation [2,4],

V (ϕ1, ϕ2) = λ1

(
ϕ+

1 ϕ1 − v2
1

2

)2

+ λ2

(
ϕ+

2 ϕ2 − v2
2

2

)2

+ λ3

[(
ϕ+

1 ϕ1 − v2
1

2

)
+

(
ϕ+

2 ϕ2 − v2
2

2

)]2

+ λ4[(ϕ+
1 ϕ1)(ϕ+

2 ϕ2) − (ϕ+
1 ϕ2)(ϕ+

2 ϕ1)]

+ λ5

[
Re(ϕ+

1 ϕ2) − v1v2
2

Re(eiξ)
]2

+ λ6

[
Im(ϕ+

1 ϕ2) − v1v2
2

Im(eiξ)
]2
, (1)

where the λi are real constants, and the SU(2) doublets
ϕ1,2 have the components

ϕ1 =
{

−iw+
1 ,

1√
2
(v1 + h1 + iz1)

}
,

ϕ2 =
{

−iw+
2 ,

1√
2
(v2 + h2 + iz2)

}
. (2)

w1,2 are complex fields and z1,2, h1,2 are real scalar fields.
At positive λ1, · · · , λ6 each term of the potential V (ϕ1, ϕ2)
is obviously positive and its zero minimum is achieved if
the vacuum expectation values of 〈ϕ1〉, 〈ϕ2〉 are taken in
the form

〈ϕ1〉 =
1√
2
{0, v1}, 〈ϕ2〉 =

1√
2
{0, v2eiξ}. (3)

In the case of λ5 = λ6 (corresponding to the CP -conserv-
ing MSSM-like potential, see below) the last two terms in
(1) form the modulo squared, and the phase ξ can be re-
moved from the potential by a U(1) rotation of ϕ2, which
does not affect minimization. In this section we will con-
sider the case λ5 �= λ6, ξ = 0. Substitution of (2) into
(1) gives a bilinear form of the mass term with mixed
components wi, hi, zi, which can be diagonalized by an

orthogonal transformation of the fields in order to define
the tree-level masses of the Higgs bosons. In the CP -
conserving case the potential terms involving the z1, z2
fields from the imaginary parts of the ϕ1, ϕ2 doublets and
the h1, h2 fields from their real parts do not mix, so the
mass terms are diagonalized by separate two-dimensional
rotations of the z1, z2 and the h1, h2 fields. The resulting
spectrum of scalars consists of two charged H±, three neu-
tral h, H, A0 scalar fields, and three Goldstone bosons G.
This procedure is described in many papers (for instance,
[4,9]). The w1,2 sector is diagonalized by the rotation of
w1, w2 → H,G:

w±
1 = −H±sβ +G±cβ , w±

2 = H±cβ +G±sβ , (4)

defined by the angle

tgβ =
v2
v1

(5)

and leading to the masslessG field and the field of the mas-
sive charged Higgs boson H±, m2

H± = λ4(v2
1 + v2

2)/2. The
z1,2 sector is diagonalized by the rotation z1, z2 → A0, G

′

defined by the angle β and giving again one massless field
G

′
and the field of a CP -odd Higgs boson A0 with the

mass m2
A = λ6(v2

1 + v2
2)/2. Finally, the h1, h2 sector is di-

agonalized by the rotation h1, h2 → h,H defined by the
angle α:

sin2α =
2m12√

(m11 −m22)2 + 4m2
12

,

cos2α =
m11 −m22√

(m11 −m22)2 + 4m2
12

, (6)

where

m11 =
1
4
[4v2

1(λ1 + λ3) + v2
2λ5],

m22 =
1
4
[4v2

2(λ2 + λ3) + v2
1λ5],

m12 =
1
4
(4λ3 + λ5)v1v2,

giving two massive fields of CP -even Higgs bosons H,h
with masses

m2
H,h = m11 +m22 ±

√
(m11 −m22)2 + 4m2

12. (7)

The diagonal mass term of the scalar fields and their triple
and quartic self-interaction vertices can be explicitly ob-
tained by the substitution of the following expressions for
λi into the potential V (ϕ1, ϕ2) (1):
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A0 , (8)
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where we used the notation v2 = v2
1 + v2

2 , sα = sinα,
cα = cosα. Diagonalization of the mass term takes place
for arbitrary λ5, which is a free parameter of the model.

The second representation of the Higgs potential,

U(ϕ1, ϕ2) = −µ2
1(ϕ

+
1 ϕ1) − µ2

2(ϕ
+
2 ϕ2)

− µ2
12(ϕ

+
1 ϕ2 + ϕ+

2 ϕ1)

+ λ̄1(ϕ+
1 ϕ1)2 + λ̄2(ϕ+

2 ϕ2)2 + λ̄3(ϕ+
1 ϕ1)(ϕ+

2 ϕ2)

+ λ̄4(ϕ+
1 ϕ2)(ϕ+

2 ϕ1)

+
λ̄5

2
[(ϕ+

1 ϕ2)(ϕ+
1 ϕ2) + (ϕ+

2 ϕ1)(ϕ+
2 ϕ1)], (9)

originates from the general SUSY action after the integra-
tion over Grassman variables and introduction of the soft
SUSY-breaking terms (see [4]). It is easy to check that the
potentials (1) and (9) are equivalent if the parameters λ̄i,
µ2

1, µ
2
2, µ

2
12 and λi are related by the formulae

λ̄1 = λ1 + λ3, λ̄2 = λ2 + λ3, λ̄3 = 2λ3 + λ4, (10)

λ̄4 = −λ4 +
λ5

2
+
λ6

2
, λ̄5 =

λ5

2
− λ6

2
, µ2

12 = λ5
v1v2

2

and

µ2
1 = λ1v

2
1 +λ3v

2
1 +λ3v

2
2 , µ2

2 = λ2v
2
2 +λ3v

2
1 +λ3v

2
2 . (11)

Unlike the potential (1) where the minimization is obvi-
ous, the symbolic structure of (9) does not demonstrate
evidently its minimum. The substitution of (2) into (9)
gives linear terms in the component fields z1,2, h1,2 (or the
physical fields h,H,A) and unless some additional condi-
tions to remove the linear terms are imposed, we are not
in the minimum of the potential. So (11), which set to
zero the terms which are linear in the component fields,
are the minimization conditions. The diagonalization of
U(ϕ1, ϕ2) takes place for arbitrary parameter µ2

12.
The inverse transformation (10) has the form

λ1 = λ̄1 − λ̄3

2
− λ̄4

2
− λ̄5

2
+
λ5

2
,

λ2 = λ̄2 − λ̄3

2
− λ̄4

2
− λ̄5

2
+
λ5

2
,

λ3 =
λ̄3

2
+
λ̄4

2
+
λ̄5

2
− λ5

2
, λ4 = −λ̄4 − λ̄5 + λ5,

λ6 = −2 λ̄5 + λ5 (12)

so the masses of the CP -even scalars and their mixing
angle α (6) and (7) in the case of the potential U(ϕ1, ϕ2)
can be easily obtained using

m11 +m22 = v2
1λ̄1 + v2

2λ̄2 +
µ2

12

s2β
,

m11 −m22 = v2
1λ̄1 − v2

2λ̄2 − ctg 2βµ2
12,

2m12 = v1v2(λ̄3 + λ̄4 + λ̄5) − µ2
12. (13)

The diagonal form of U(ϕ1, ϕ2) and the physical scalar
boson self-interaction vertices are obtained by substitution
of the following expressions for λ̄i and µi into (9):
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1

2v2

[(
sα

cβ

)2

m2
h +

(
cα
cβ

)2
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, (16)
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v2
1

2
− µ2

12ctgβ. (20)

The conditions (14)–(18) ensure the diagonal form of the
mass term expressed in the physical fields h,H,A,H± and
(19) and (20) are the minimization conditions. Two para-
meterizations for the Higgs boson self-interaction vertices
can be used in THDM. In the first parameterization [10]
µ2

12 is a free parameter and λ̄5 is defined by (18). In the
second one λ̄5 is a free parameter and µ2

12 is equal to
sβcβ(v2λ̄5 + m2

A). Complete sets of Feynman rules (uni-
tary gauge) for the triple (µ2

12 and λ5 parameterizations)
and quartic (µ2

12 parameterization) Higgs boson interac-
tions in the general two-Higgs-doublet model with CP -
conservation are shown in Tables 1 and 21. In the case of
the MSSM potential at the scale MSUSY (see (29)) λ̄5 = 0
and it follows from (8), (10) and (11) that µ2

12 is fixed and
equal to m2

Asβcβ .
Two additional terms of dimension four can be con-

structed using the complete set of SU(2)×U(1) invariants
ϕ+

1 ϕ1, ϕ+
2 ϕ2, Reϕ+

1 ϕ2 and Imϕ+
1 ϕ2 (a detailed discussion

of all possible potential forms can be found in [12]). These
terms are usually added to the U(ϕ1, ϕ2) with the para-
meters λ̄6 and λ̄7

Ū(ϕ1, ϕ2) = U(ϕ1, ϕ2) (21)
+ λ̄6(ϕ+

1 ϕ1)[(ϕ+
1 ϕ2) + (ϕ+

2 ϕ1)]

+ λ̄7(ϕ+
2 ϕ2)[(ϕ+

1 ϕ2) + (ϕ+
2 ϕ1)].

The diagonal form of Ū(ϕ1, ϕ2) at the local minimum
takes place at arbitrary µ2

12, λ̄6, λ̄7 and can be achieved by
means of the substitution (14)–(20) with additional λ̄6-,
λ̄7-terms on the right-hand side:

λ̄1 =
1

2v2

[(
sα

cβ

)2

m2
h +

(
cα
cβ

)2

m2
H − sβ

c3β
µ2

12

]

+
1
4
(λ̄7tg3β − 3λ̄6tgβ), (22)

1 These sets were obtained by means of the LanHEP pack-
age [11], see http://theory.sinp.msu.ru/˜semenov/lanhep.html
Six misprints in the sign of the second term in the fac-
tor (c3

αcβ − s3
αsβ) that occur in [10] are corrected in Ta-

ble 3 in the expressions for the vertices hhhh, AAAA, hhAA,
H+H−H+H−, H+H−AA, H+H−hh
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Table 1. Triple Higgs boson interaction vertices in the general two-Higgs-doublet
model, µ12 parameterization

Fields in the vertex Variational derivative of Lagrangian by fields

h h h 3e
MW sWs2

2β
[−s2β(c3

αcβ − s3
αsβ)m2

h + 2c2
α−βcα+βµ2

12]

H H H 3e
MW sWs2

2β
[−s2β(c3

αsβ + s3
αcβ)m2

H + 2s2
α−βsα+βµ2

12]

H H h
esα−β

2MW sWs2
2β

[−(2m2
H + m2

h)s2αs2β + 4(3sαcα + sβcβ)µ2
12]

H h h − ecα−β

2MW sWs2
2β

[(m2
H + 2m2

h)s2αs2β − 4(3sαcα − sβcβ)µ2
12]

H A A − e
MW sWs2

2β
[s2β(sαc3

β + cαs3
β)m2

H + s2
2βcα−βm2

A − 2sα+βµ2
12]

h A A e
MW sWs2

2β
[s2β(sαs3

β − cαc3
β)m2

h + s2
2βsα−βm2

A + 2cα+βµ2
12]

h H+ H− e
MW sWs2

2β
[s2β(sαs3

β − cαc3
β)m2

h + s2
2βsα−βm2

H± + 2cα+βµ2
12]

H H+ H− − e
MW sWs2

2β
[s2β(sαc3

β + cαs3
β)m2

H + s2
2βcα−βm2

H± − 2sα+βµ2
12]

Table 2. Triple Higgs boson interaction vertices in the general two-Higgs-doublet
model, λ5 parameterization

Fields in the vertex Variational derivative of Lagrangian by fields

h h h 3e
MW sWs2β

[−(c3
αcβ − s3

αsβ)m2
h + c2

α−βcα+β(m2
A + v2λ5)]

H H H 3e
MW sWs2β

[−(c3
αsβ + s3

αcβ)m2
H + s2

α−βsα+β(m2
A + v2λ5)]

H H h
esα−β

2MW sWs2β
[−(2m2

H + m2
h)s2α + 2(3sαcα + sβcβ)(m2

A + v2λ5)]

H h h − ecα−β

2MW sWs2β
[(m2

H + 2m2
h)s2α − 2(3sαcα − sβcβ)(m2

A + v2λ5)]

H A A − e
MW sWs2β

[(sαc3
β + cαs3

β)m2
H + c2βsα−βm2

A − sα+βv2λ5]

h A A e
MW sWs2β

[(sαs3
β − cαc3

β)m2
h + c2βcα−βm2

A + cα+βv2λ5]

h H+ H− e
MW sWs2β

[(sαs3
β − cαc3

β)m2
h + sα−βm2

H± + cα+β(m2
A + v2λ5)]

H H+ H− − e
MW sWs2β

[(sαc3
β + cαs3

β)m2
H + cα−βm2

H± − sα+β(m2
A + v2λ5)]

λ̄2 =
1

2v2

[(
cα
sβ

)2

m2
h +

(
sα

sβ

)2

m2
H − cβ

s3β
µ2

12

]

+
1
4
(λ̄6ctg3β − 3λ̄7ctgβ), (23)

λ̄3 =
1
v2

[
2m2

H± − µ2
12

sβcβ
+
s2α

s2β
(m2

H −m2
h)

]
− λ̄6

2
ctgβ

− λ̄7

2
tgβ, (24)

λ̄4 =
1
v2

(
µ2

12

sβcβ
+m2

A − 2m2
H±

)
− λ̄6

2
ctgβ − λ̄7

2
tgβ,

(25)

λ̄5 =
1
v2

(
µ2

12

sβcβ
−m2

A

)
− λ̄6

2
ctgβ − λ̄7

2
tgβ, (26)

µ2
1 = λ̄1v

2
1 + (λ̄3 + λ̄4 + λ̄5)

v2
2

2
− µ2

12tgβ

+
v2s2β

2
(3λ̄6ctgβ + λ̄7tgβ), (27)

µ2
2 =̄λ2v

2
2 + (λ̄3 + λ̄4 + λ̄5)

v2
1

2
− µ2

12ctgβ

+
v2c2β

2
(λ̄6ctgβ + 3λ̄7tgβ). (28)

Our expressions for the redefined λ̄4 and λ̄5 are the same
as given in [13].

The potentials (1) and (9) can be reduced to the MSSM
potential in some regions of the parameter space which
we are going to discuss. The potential V (ϕ1, ϕ2) (1) has
eight parameters: two VEV’s, v1, v2, and six couplings, λi

(i = 1, · · · , 6). Eight parameters of the potential U(ϕ1, ϕ2)
in (9), µ1, µ2, µ12 and λ̄i (i = 1, · · · , 5), can be found us-
ing (10) and (11). From the other side, in the Higgs sector
we have eight physical parameters: the mixing angle β and
W -boson massmW , the mixing angle α, the parameter µ2

12
and four masses of the scalars mh, mH , mA, mH± . The
mW is fixed experimentally maintaining the constraint on
the v1, v2, v2 = v2

1 + v2
2 = 4m2

W /e2 · sin2θW which fol-
lows from the Higgs kinetic term DµϕD

µϕ (g = e/sinθW;
θW is the Weinberg angle). So the Higgs sector of THDM
with the potentials (1) or (9) is described by a seven-
dimensional parameter space. In the case of the superpo-
tential five additional constraints are imposed, relating all
Higgs boson self-couplings λ̄i, (i = 1, · · · , 5) to the gauge
coupling constants at the energy scale MSUSY [14]:

λ̄SUSY
1 = λ̄SUSY

2 =
g2 + g2

1

8
, λ̄SUSY

3 =
g2 − g2

1

4
,

λ̄SUSY
4 = −g2

2
, λ̄SUSY

5 = 0. (29)
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Table 3. Quartic Higgs boson interaction vertices in the general two-Higgs-doublet model, µ12

parameterization

Fields in the vertex Variational derivative of Lagrangian by fields

h h h h − 3
4

e2

M2
W

s2
ws3

2β
[4s2β(c3

αcβ − s3
αsβ)2m2

h + s2βs2
2αc2

α−βm2
H − 8c2

α−βc2
α+βµ2

12]

H H H H 3
4

e2

M2
W

s2
ws3

2β
[−4s2β(c3

αsβ + s3
αcβ)2m2

H + s2βs2
2αs2

α−βm2
h + 8s2

α−βs2
α+βµ2

12]

A0 A0 A0 A0 −3 e2

M2
W

s2
ws3

2β
[s2β(sαc3

β + cαs3
β)2m2

Hs2β(cαc3
β − sαs3

β)2m2
h − 2c2

2βµ2
12]

H H H h − 3
4

e2s2αsα−β

M2
W

s2
ws3

2β
[2s2β(c3

αsβ + s3
αcβ)m2

H + s2βs2αcα−βm2
h − 4sα+β ]µ2

12

H h h h − 3
4

e2s2αcα−β

M2
W

s2
ws3

2β
[2s2β(c3

αcβ − s3
αsβ)m2

h + s2βs2αsα−βm2
H − 4cα+β ]µ2

12

H H h h − 1
4

e2

M2
W

s2
ws3

2β
[−s2βs2α(3s2αs2

α−β − 4sα−βcα+β − 2sα+βsα−βcα−β)m2
h

+s2βs2α(s2β + 3s2αs2
α−β)m2

H − 8(3s2
αc2

α − s2
βc2

β)µ2
12]

H H A0 A0 1
4

e2

M2
W

s2
ws3

2β
[−2s2βs2αsα−β(cαc3

β − sαs3
β)m2

h − 2s3
2βc2

α−βm2
A

−s2β(s2αs2β + 3s2
α−βs2

α+β − s2βs2
α−β)m2

H + 4(c2
2βs2

α−β + s2
α+β)µ2

12]
h h A0 A0 1

4
e2

M2
W

s2
ws3

2β
[−s2

2β(4c2βc2α + 3s2
α−βs2

α+β + s4
α−β)m2

h − 2s3
2βs2

α−βm2
A

−2s2βs2αcα−β(sαc3
β + cαs3

β)m2
H + 2(s2

2βs2
α−β + 4(cαc3

β − sαs3
β)2)µ2

12]
H A0 A0 h 1

4
e2

M2
W

s2
ws3

2β
[−2s2βs2αcα−β(cαc3

β − sαs3
β)m2

h + s3
2βsα−βcα−βm2

A

−2s2βs2αsα−β(sαc3
β + cαs3

β)m2
H + 2(2s2αc2β − s2βsα−βcα−β)µ2

12]
H+ H+ H− H− −2 e2

M2
W

s2
ws3

2β
[s2β(cαc3

β − sαs3
β)m2

h + s2β(sαc3
β + cαs3

β)m2
H − 2c2

2βµ2
12]

H+ H− A0 A0 − e2

M2
W

s2
ws3

2β
[s2β(cαc3

β − sαs3
β)m2

h + s2β(sαc3
β + cαs3

β)m2
H − 2c2

2βµ2
12]

H+ H− h h 1
4

e2

M2
W

s2
ws3

2β
[−s2β(4c2αc2β + 3s2

α−βs2
α+β + s4

α−β)m2
h − 2s3

2βs2
α−βm2

H±

−2s2βs2αcα−β(sαc3
β + cαs3

β)m2
H + 2(s2

2βs2
α−β + 4(cαc3

β − sαs3
β)2µ2

12]
H+ H− H H 1

4
e2

M2
W

s2
ws3

2β
[−2s2βs2αsα−β(cαc3

β − sαs3
β)m2

h − 2s3
2βc2

α−βm2
H±

+s2β(s2αs2β − 3s2
α−βs2

α+β + s4
α−β)m2

H + 4(c2
2βs2

α−β + s2
α+β)µ2

12]
H H+ H− h 1

2
e2

M2
W

s2
ws3

2β
[−s2βs2αcα−β(cαc3

β − sαs3
β)m2

h + s3
2βsα−βcα−βm2

H±

−s2βs2αsα−β(cαs3
β + sαc3

β)m2
H + 2(2s2αc2β − s2

2βsα−βcα−β)µ2
12]

It follows that the four Higgs boson masses and the two
mixing angles are defined by two independent parameters.
One can choose, for example, the r1, r2 parameterization
[15] (r1,2 = m2

h,H/m
2
Z) or the well-known mA, tgβ para-

meterization. In order to reduce the general two-Higgs-
doublet model vertices to MSSM at the scale MSUSY it is
convenient to use the α, β parameterization:

m2
h = m2

Zc2β
sα+β

sα−β
, m2

H = m2
Zc2β

cα+β

cα−β
,

m2
A = m2

Z

s2(α+β)

s2(α−β)
, µ2

12 = m2
Asβcβ . (30)

Substitution of these expressions to the vertex factors in
Tables 1 and 2 after trivial trigoniometric transformations
reduces them [10] to simpler MSSM factors [4]. However,
(30) are no longer valid at the energy scale mW where the
λ̄SUSY

i couplings and the masses of the Higgs bosons are
significantly changed by radiative corrections and the ef-
fective two-Higgs-doublet potential should be described in
the complete seven-dimensional parameter space. Practi-
cal calculations of the radiatively corrected masses and/or
couplings can be conveniently carried out using the re-
sults of the two approaches, the renormalization group
(the HMSUSY package [16] or the analytical representa-

tion [17]), and diagrammatic (the FeynHiggsFast pack-
age [18]). Two different parameterizations can be used for
these approaches.

In the RG approach it seems convenient to use the two-
Higgs-doublet model parameter spacemA, tgβ, λ̄1, · · · , λ̄5.
In the following we shall take into account the λ̄6- and λ̄7-
terms defined by (21), so the parameter space will be nine-
dimensional. The RG evolution of the coupling constants
λ̄i from the energy scale MSUSY to the electroweak scale
mW defines the λ̄1, · · · , λ̄5 in (22)–(26) and the parameters
λ̄6, λ̄7. At a given mA, tgβ, λ̄6, λ̄7 the parameters µ2

12 and
mH± are fixed by the conditions (25) and (26), the para-
meters µ2

1 and µ2
2 are fixed by (27) and (28), and α, mh

and mH can be found using (22)–(24). If we denote the
deviation from the coupling λ̄SUSY

i at the MSSM scale by
∆λ̄i,

2(λ̄SUSY
1,2 − λ̄1,2) = ∆λ̄1,2, λ̄SUSY

3,4 − λ̄3,4 = ∆λ̄3,4,

−λ̄5,6,7 = ∆λ̄5,6,7,

we find the mixing angle (introducing the notation g2
1 +

g2 = g2m2
Z/m

2
W , g2 − g2

1 = g2(2 −m2
Z/m

2
W ) while using

(22)–(26))

tg2α = (31)
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s2β(m2
A + m2

Z ) + v2((∆λ̄3 + ∆λ̄4)s2β + 2c2β∆λ̄6 + 2s2β∆λ̄7)

c2β(m2
A

− m2
Z

) + v2(∆λ̄1c2
β

− ∆λ̄2s2
β

− ∆λ̄5c2β + (∆λ̄6 − ∆λ̄7)s2β)
;

CP -even Higgs boson masses and the µ2
12 parameter

m2
H = c2α+βm

2
Z + s2α−βm

2
A (32)

− v2
(
∆λ̄1c

2
αc

2
β +∆λ̄2s

2
αs

2
β

+ 2(∆λ̄3 +∆λ̄4)cαcβsαsβ

+ ∆λ̄5(c2αs
2
β + s2αc

2
β)

)
+ 2sα+β(∆λ̄6cαcβ +∆λ̄7sαsβ),

m2
h = s2α+βm

2
Z + c2α−βm

2
A

− v2
(
∆λ̄1s

2
αc

2
β +∆λ̄2c

2
αs

2
β

− 2(∆λ̄3 +∆λ̄4)cαcβsαsβ

+ ∆λ̄5(s2αs
2
β + c2αc

2
β)

)
− 2cα+β(∆λ̄6sαcβ −∆λ̄7cαsβ),

m2
H± = m2

W +m2
A − v2

2
(∆λ̄5 −∆λ̄4), (33)

µ2
12 = sβcβ

[
m2

A − v2

2
(2∆λ̄5 +∆λ̄6ctgβ +∆λ̄7tgβ)

]
,

with the minimization conditions

µ2
1 =

1
2
m2

Zc2β − µ2
12tgβ

− v2

2
[
∆λ̄1c

2
β + (∆λ̄3 +∆λ̄4 +∆λ̄5)s2β + 3∆λ̄6sβcβ

+ ∆λ̄7
s3β
cβ

]
,

µ2
2 = −1

2
m2

Zc2β − µ2
12ctgβ

− v2

2

[
∆λ̄2s

2
β + (∆λ̄3 +∆λ̄4 +∆λ̄5)c2β +∆λ̄6

c3β
sβ

+ 3∆λ̄7sβcβ
]
. (34)

These expressions can be straightforwardly used to calcu-
late the radiatively corrected masses of Higgs bosons and
the mixing angle α in the MSSM with the help of a so-
lution of the RG equations for λ̄1, · · · , λ̄7. Apparently, in
the RG approach Feynman rules in terms of λ̄i couplings
are more convenient than rules in terms of Higgs particle
masses.

In the diagrammatic approaches to the calculation of
the radiatively corrected masses [18] the corrections tomh,
mH , mA and mH± are extracted from the renormalized
Higgs boson self-energies (usually radiative corrections to
only the CP -even Higgs boson masses are calculated). The
set of 7 + 2 independent parameters inherent for the di-
agrammatic approaches could be mA, tgβ, α, µ2

12, mh,
mH , mH± , and λ̄6, λ̄7. At a given mA, tgβ, λ̄6, λ̄7 the
µ2

12 parameter can be fixed at the value m2
Asβcβ , and

α can be calculated using the renormalized self-energies
correction [18] to the relation valid at the MSUSY scale

m2
A + m2

Z = −s2α/s2β(m2
H − m2

h). Then λ̄4 is defined
by (25) and λ̄1, · · · , λ̄3 can be found using (22)–(24). In
the diagrammatic calculations Feynman rules in terms of
the radiatively corrected Higgs boson masses look more
natural. A substitution of the radiatively corrected Higgs
masses to the tree-level Higgs vertex factors is expected
to give results very close to those obtained from the loop
corrections to the Higgs vertex at the SUSY scale (see the
discussion in the last of [8]). It has been shown in [19] by
the example of hhh and hhhh vertices (and for the case
of a diagonal third generation squark mass matrix) that
large radiative corrections to the vertex factors calculated
diagrammatically can be absorbed in the radiatively cor-
rected Higgs boson masses.

Other parameterizations in the two-Higgs-doublet
model are of course possible, but they should be care-
fully introduced to respect the minimization and diago-
nalization conditions (22)–(28). The introduction of scalar
particle masses and mixing angles inconsistent with them
violates either the diagonalizaton of the potential or its
SU(2) invariance, even if the minimization conditions re-
main valid.

3 CP -violation
in the two-Higgs-doublet model

CP -transformation of the scalar doublet CPϕP+C+ =
∗
ζCP ϕ+ (the phase factor |ζCP | = 1) changes the sign
of the imaginary part Im(ϕ+

1 ϕ2) in the λ6-term of the
potential in (1), so if λ5 �= λ6, λ6 �=0 and ξ �=0, CP -
symmetry is broken there explicitly. In other words, the
dimension two terms of (1) appear with the complex para-
meter µ2

12:

λ5

4
[ϕ+

1 ϕ2 + ϕ+
2 ϕ1 − v1v2cosξ]2

+
λ6

4
[−i(ϕ+

1 ϕ2 − ϕ+
2 ϕ1) − v1v2sinξ]2

⇒
(
λ5

4
− λ6

4

)
[(ϕ+

1 ϕ2)2 + (ϕ+
2 ϕ1)2]

+
(
λ5

2
+
λ6

2

)
ϕ+

1 ϕ2ϕ
+
2 ϕ1

− v1v2
2

(λ5cosξ − iλ6sinξ)ϕ+
1 ϕ2

− v1v2
2

(λ5cosξ + iλ6sinξ)ϕ+
2 ϕ1, (35)

so we find

µ2
12 =

v1v2
2

(λ5cosξ − iλ6sinξ). (36)

CP is (softly) broken by the µ2
12ϕ

+
1 ϕ2+

∗
µ

2

12 ϕ
+
2 ϕ1-terms.

In this special case when the same phase ξ is involved
both in the potential and the vacuum expectation value
of ϕ2, the diagonalization and minimization of the CP -
transformed potential become less transparent. It is more



M.N. Dubinin, A.V. Semenov: Triple and quartic interactions of Higgs bosons 229

convenient to analyze the potential form (21) for the gen-
eral case of complex parameters with arbitrary phases.
In the following we shall consider the hermitian potential
which is the generalization of (21):

Ū(ϕ1, ϕ2) =
1
2

[
− µ2

1(ϕ
+
1 ϕ1)−

∗
µ2

1 (ϕ+
1 ϕ1) − µ2

2(ϕ
+
2 ϕ2)

−
∗
µ2

2 (ϕ+
2 ϕ2)

]
− µ2

12(ϕ
+
1 ϕ2)−

∗
µ2

12 (ϕ+
2 ϕ1)

+
1
2

[
λ̄1(ϕ+

1 ϕ1)2+
∗
λ̄1 (ϕ+

1 ϕ1)2 + λ̄2(ϕ+
2 ϕ2)2

+
∗
λ̄2 (ϕ+

2 ϕ2)2

+ λ̄3(ϕ+
1 ϕ1)(ϕ+

2 ϕ2)+
∗
λ̄3 (ϕ+

1 ϕ1)(ϕ+
2 ϕ2)

+ λ̄4(ϕ+
1 ϕ2)(ϕ+

2 ϕ1)+
∗
λ̄4 (ϕ+

1 ϕ2)(ϕ+
2 ϕ1)

]

+
λ̄5

2
(ϕ+

1 ϕ2)(ϕ+
1 ϕ2) +

∗
λ̄5

2
(ϕ+

2 ϕ1)(ϕ+
2 ϕ1)

+ λ̄6(ϕ+
1 ϕ1)(ϕ+

1 ϕ2)+
∗
λ̄6 (ϕ+

1 ϕ1)(ϕ+
2 ϕ1)

+ λ̄7(ϕ+
2 ϕ2)(ϕ+

1 ϕ2)+
∗
λ̄7 (ϕ+

2 ϕ2)(ϕ+
2 ϕ1); (37)

∗
a denotes the complex conjugated of a. The potential
terms with complex parameters µ2

12 and λ̄5, λ̄6, λ̄7 explic-
itly violate CP -invariance. With the help of U(1)Y hyper-
charge symmetry of the model the phases θµ and θ5,6,7
of the complex parameters µ2

12 and λ̄5,6,7 can be removed
by the phase rotation of scalar doublets ϕ1,2. In the case
when v1 in (3) is taken real and positive, and η is the
overall phase of the ϕ2 doublet, the conditions to remove
the explicit phases from the potential are [20]

θµ − η = nµπ, θ5 − 2η = n5π,

θ6,7 − η = n6,7π, (38)

where nµ, ni (i = 5, 6, 7) are arbitrary integer numbers.
Or equivalently, in terms of complex parameters the con-
ditions for the absence of explicit CP -violation in the ef-
fective potential (37) are [5]

Im(µ4
12

∗
λ̄5) = 0, Im(µ2

12

∗
λ̄6) = 0,

Im(µ2
12

∗
λ̄7) = 0. (39)

The phase of complex µ2
12 can always be rotated away, so

µ2
12 can be taken real. In the scenario of fine-tuning for

the phases, when the conditions (38) or (39) are satisfied,
the λ̄i are also real. Otherwise λ̄i will be redefined after a
phase rotation, keeping explicitly CP -violating terms.

If the phases of µ2
12, λ̄i are rotated away so there

are no explicitly CP -non-invariant potential terms, CP -
invariance can nevertheless be broken spontaneously. Us-
ing the convention that v1 and v2 in (3) are real and pos-
itive and selecting the ξ phase-dependent terms of (37),
which are of the form acos2ξ+ bcosξ, where a = λ̄5v

2
1v

2
2/2

and b = (λ̄6v
2
1/2+ λ̄7v

2
2/2−µ2

12)v1v2 (0 ≤ ξ ≤ π), one can

find their minimum (see the appendix of [20]) at λ̄5 ≥ 0
and

cosξ =
µ2

12 − v2

2
λ̄6c

2
β − v2

2
λ̄7s

2
β

λ̄5v2sβcβ
(40)

(the special case µ2
12 = 0 was found in [1,3]). If | µ2

12 −
(v2/2)λ̄6c

2
β − (v2/2)λ̄7s

2
β |≥ λ̄5v

2sβcβ , then the sponta-
neously CP -violating extremum does not exist and the
minimum of the potential occurs at the endpoints cosξ =
±1. For b > 0 the minimum is at ξ = π and for b < 0 the
minimum is at ξ = 0. If λ̄5 < 0, the extremum inside the
interval |cosξ| < 1 is the maximum, so the local minima
are at the endpoints ξ = 0, π. The case ξ = 0 is reduced to
the case ξ = π by the change of sign for λ̄6, λ̄7, µ

2
12 (change

of sign for the b). The special case of CP -conservation oc-
curs at ξ = π/2 when µ2

12 = (v2/2)λ̄6c
2
β + (v2/2)λ̄7s

2
β . In

this case, of purely imaginary 〈ϕ2〉 [21], our diagonaliza-
tion procedure must be reconsidered. For instance, CP -
even Higgs mass eigenstates are formed in this case by
different orthogonal linear combinations of the real and
imaginary parts of the scalar doublets, Reϕ1 and Imϕ2.

The substitution of (26) into the no-extremum con-
dition |µ2

12 − (v2/2)λ̄6c
2
β − (v2/2)λ̄7s

2
β | ≥ λ̄5v

2sβcβ gives
m2

A ≥0. In the case λ̄5 < 0 the absolute minimum of
the potential occurs at ξ = 0 (but not ξ = π) if µ2

12 −
(v2/2)λ̄6c

2
β − (v2/2)λ̄7s

2
β ≥ 0, which gives, in combination

with (26), m2
A ≥| λ̄5 | v2. Even if λ̄5 is of the order of

1, the latter condition is valid when mA is in the mass
range of the order of or greater than v. In the case of real
parameters µ2

12, λ̄i, it is not straightforward to combine
spontaneous CP -violation with our procedure of diagonal-
ization. In the case of complex parameters the situation
may be changed. The extremum conditions can be found
from the study of the fourth power equation with the coef-
ficients depending on the real and imaginary parts of µ2

12,
λ̄i. Nevertheless we are not going to consider spontaneous
CP -violation further on. With real parameters µ2

12, λ̄i and
in the absence of spontaneous CP -violation the minimum
of the potential (37) can be taken at ξ = 0. At the same
time, insofar as the physical motivation of the fine-tuning
conditions (38) and (39) for CP -conservation is not avail-
able, in the following we consider the general case of di-
agonalization and minimization of the two-Higgs-doublet
potential with complex parameters.

For the diagonalization of (37) in the ground state we
used the ansatz (22)–(28) to be taken for the real parts
of the parameters. The real part of the parameter µ2

12 is
expressed through the real parts of λ̄5,6,7 using (26):

Reµ2
12 = m2

Asβcβ (41)

+ v2
(
sβcβReλ̄5 +

1
2
c2βReλ̄6 +

1
2
s2βReλ̄7

)
,

defining also the real parts of λ̄1,2,3,4 and µ2
1, µ

2
2 by means

of (22)–(25), and (27) and (28). The substitution of com-
plex µi and λ̄i into the potential (37) leads to the linear
term and the non-diagonal mass term which are depen-
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dent on the imaginary parts of µ2
12, λ̄i:

Ū(ϕ1, ϕ2) = c0A+ c1hA+ c2HA (42)

+
m2

h

2
H2 +

m2
H

2
H2 +

m2
A

2
A2 +m2

H±H+H−

+ third and fourth order terms in h,H,A,H±,

where

c0 = −vImµ2
12 +

v3

2
sβcβImλ̄5 +

v3

2
(c2βImλ̄6 + s2βImλ̄7),

c1 = −sα−βImµ2
12 +

v2

4
(s2βsα−β − 2cα+β)Imλ̄5

− v2

2
(sβcβcα−β − 3sαcβ)Imλ̄6

+
v2

2
(sβcβcα−β − 3cαsβ)Imλ̄7,

c2 = cα−βImµ2
12 +

v2

4
(c2βsα−β − 3sα+β)Imλ̄5

− v2

2
(c2βcα−β + 2cαcβ)Imλ̄6

− v2

2
(s2βcα−β + 2sαsβ)Imλ̄7. (43)

In the case of the CP -conservation of (38) and (39), the
linear and non-diagonal second order terms hA andHA do
not appear because all imaginary parts of the parameters
can be removed. The linear term in A demonstrates that
after the introduction of complex couplings we may find
ourselves to be out of a local minimum of the potential
Ū(ϕ1, ϕ2).

The minimization condition for the imaginary parts
c0 = 0 must be imposed. If λ̄i, i = 5, 6, 7 are zero (this
occurs in THDM if we additionally introduce a global
U(1)Q symmetry, softly broken by the dimension two µ2

12-
term [22]), the imaginary part of µ2

12 can be removed by
a phase rotation of ϕ2, so the tree-level potential is CP -
invariant. In the general THDM with non-zero parameters
the phase rotation of ϕ2 which removes Imµ2

12 redefines
λ̄i, i = 5, 6, 7. These simple observations for the THDM
potential isolated from any other physical fields are no
longer trivial if, keeping in mind the MSSM, we switch
on the interaction of ϕ1 and ϕ2 with scalar quarks. CP -
invariance of the latter is (softly) broken by the dimen-
sion three terms with the Higgs mixing parameter µ and
the trilinear parameters At,b of the form f1,2Ab,tϕ

0
1,2q̃

∗
Rq̃L,

µf2,1ϕ
0
1,2q̃

∗
Lq̃R (q = t̃, b̃; ϕ0

1,2 are the neutral components of
the Higgs doublets, f1,2 =

√
2mb,t/v1,2). Then the quartic

scalar interaction parameters λ̄i, i = 5, 6, 7, are affected
by radiative corrections from the one-loop diagrams with
scalar quarks of the order of µ2A2/M4

SUSY, µ3A/M4
SUSY

and µA3/M4
SUSY [5], so the phases of λ̄i, i = 5, 6, 7, are

defined by the phases of the complex µ and A, thus con-
straining the phase of µ2

12 in powers of the conditions (41)
and (43). In the case of the Born level MSSM potential
with a global U(1)Q symmetry when λ̄i = 0 (i = 5, 6, 7)
the complex µ2

12 parameter can still appear beyond the

tree-level due to the same CP -violating Yukawa interac-
tions of the scalar quarks with the Higgs fields. This pos-
sibility of the µ2

12 phase induced in higher orders by radia-
tive corrections calculated diagrammatically has been con-
sidered in [23]. The restoration of the potential minimum
can be achieved by means of the opposite sign quantum
correction term, originating from the tadpole diagrams
with the pseudoscalar A connected to the squark loops2.

In the classical minimum c0 = 0 we find

c1 =
v2

2
(sαs

3
β − cαc

3
β)Imλ̄5

+ v2(sαcβImλ̄6 − cαsβImλ̄7),

c2 = −v2

2
(sαc

3
β + cαs

3
β)Imλ̄5

− v2(cαcβImλ̄6 + sαsβImλ̄7). (44)

The second order terms hA and HA in (42) can be re-
moved as usual by the orthogonal rotation aij (i, j =
1, 2, 3) in h,H,A sector

(h,H,A) M2


 h

H

A




= (h1, h2, h3) aT
ik M

2
kl alj


h1

h2

h3


 , (45)

where the mass matrix has the form

M2 =
1
2


m2

h 0 c1
0 m2

H c2
c1 c2 m2

A


 . (46)

The squared masses of the physical states h1, h2, h3, which
are the Higgs bosons without definite CP -parity, are de-
fined by the eigenvalues of the mass matrix M2 (the roots
of the cubic equation for the eigenvalues are given by the
Cardano formulae):

m2
h2 = 2

√
( − q)cos

(
θ

3

)
− a2

3
,

m2
h1 = 2

√
( − q)cos

(
θ + 2π

3

)
− a2

3
,

m2
h3 = 2

√
( − q)cos

(
θ + 4π

3

)
− a2

3
, (47)

where

θ = arccos
r√

( − q3)
,

r =
1
54

(9a1a2 − 27a0 − 2a3
2), q =

1
9
(3a1 − a2

2),

2 However, with non-zero λ5, λ6 and λ7, the factor of the
scalar–pseudoscalar Higgs counterterm is not explicitly propor-
tional to the tadpole renormalization constant, or the tadpole
parameter c0
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a0 = c21m
2
H + c22m

2
h −m2

hm
2
Hm

2
A,

a1 = m2
hm

2
H +m2

hm
2
A +m2

Hm
2
A − c21 − c22,

a2 = −m2
h −m2

H −m2
A.

One can see that in the limiting case of a CP -conserving
potential c1,2 → 0 the following correspondence occurs:
mh1 → mh, mh2 → mH and mh3 → mA. The normalized
eigenvectors of the matrix M2, which are at the same time
the matrix elements of aij , (h,H,A) = aijhj , have the
form aij = a

′
ij/nj , where

a
′
11 = ((m2

H −m2
h1

)(m2
A −m2

h1
) − c22), a

′
21 = c1c2,

a
′
31 = −c1(m2

H −m2
h1

),

a
′
12 = c1c2, a

′
22 = ((m2

h −m2
h2

)(m2
A −m2

h2
) − c21),

a
′
32 = −c2(m2

h −m2
h2

),

a
′
13 = −c1(m2

H −m2
h3

), a
′
23 = −c2(m2

h −m2
h3

),

a
′
33 = (m2

h −m2
h3

)(m2
H −m2

h3
)

and ni = (a
′2
1i + a

′2
2i + a

′2
3i)

1/2 3. Representations for the
triple and quartic Higgs boson self-interactions in the case
of CP -violating potential are given by the expansions of
the structures aijhjaikhkailhl, and aijhjaikhkailhlai,m

hm; they are bulky and not very telling, so we do not
show them here. If the imaginary parts of λ̄6 and λ̄7 are
not small, large off-diagonal elements of the mixing ma-
trix aij could appear, leading to significant mass splittings
of the Higgs states and modifications of the Higgs boson
interactions.

We assume that in the Yukawa sector 〈ϕ1〉 couples only
to down fermions:∑

α=d,s,b

Vuα
emα

2
√

2mW sWcβ
(48)

×[ψ̄1(1 + γ5)ψ2αϕ1 + ψ̄2α(1 − γ5)ψ1ϕ
+
1 ],

where (h,H,A) = aijhj , for the first generation quarks
ψ̄1 = {ū, Vudd̄+Vuss̄+Vubb̄}, ψ2α = (d, s, b) and analogous
terms for the c and t quarks (Vab denotes the CKM matrix
elements), and 〈ϕ2〉 couples only to up fermions (model of
type II [24]):

emu

2
√

2mW sWsβ

[
ψ̄1(1 + γ5)iτ2ψ2ϕ

+
2

+ψ̄2(1 − γ5)iτ2ψ1ϕ2

]
, (49)

where again the physical h1, h2, h3 states are introduced
by means of the aij rotation, ψ̄1 = {ū, Vudd̄+Vuss̄+Vubb̄},
ψ2 = u and analogous terms for the c and t quarks.

3 No ordering of the masses mh1 < mh2 < mh3 is required. If
we want to keep this ordering, then aij written above, valid for
the case mH > mA, must be changed. For the case mH < mA

one should replace mh2 ↔ mh3 and change the sign of ai2, ai3

in the expressions for aij

4 Higgs–gauge boson
and Higgs–fermion couplings in the MSSM
with explicit CP -violation

In the following we shall focus on the MSSM scenario for
the two-Higgs-doublet model, which allows us to restrict
strongly the THDM parameter space. It is not the only one
possible; standard model-like scenarios in the general two-
Higgs-doublet model have been discussed in [25]. A de-
tailed consideration in the framework of MSSM has been
performed in [5] (see also [6]). In this section we would like
only to compare qualitatively our results with the results
of these approaches. Our calculation follows a somewhat
different scheme. In [5] the tree-level two-Higgs-doublet
potential is CP -invariant. The phase ξ of µ2

12 is radia-
tively induced by the tadpole diagrams and can be ab-
sorbed in the definition of the µ parameter which appears
in the stop mixing matrix off-diagonal element At−µ/tgβ.
The λ̄5-, λ̄6- and λ̄7-terms are also radiatively induced
by the threshold effects. At the same time the trilinear
couplings At, Ab also carry a phase4, so both the radia-
tively induced and the trilinear phases contribute to the
phase arg(µA) of the λ̄5-, λ̄6- and λ̄7-terms. We do not
account for the radiatively induced phase which is calcu-
lated diagrammatically. In the case under consideration
the fine-tuning conditions (38) and (39) are not fulfilled,
so CP -invariance of the two-doublet potential is explicitly
broken by complex parameters at the tree level. The real
and imaginary parts of the parameter µ2

12 are defined by
means of the condition (41) for the real parts of the para-
meters λ̄5,6,7 and the minimization condition (43) (where
c0 = 0) for their imaginary parts. In the following calcu-
lations the complex parameters λ̄5,6,7 are specified in the
framework of the MSSM.

We used the two-loop symbolic results for λ̄i, i =
1, · · · , 7, which were obtained in the RG approach [17]
and extended to the case of CP -violation in [5]. The para-
meters λ̄5, λ̄6 and λ̄7 are non-zero in the next-to-leading
order approximation (RG improved leading order approx-
imation), so using (41) and (43)

Reµ2
12 = m2

Asβcβ

+ v2
(
sβcβReλ̄5 +

1
2
c2βReλ̄6 +

1
2
s2βReλ̄7

)
, (50)

Imµ2
12 =

v2

2
(sβcβImλ̄5 + c2βImλ̄6 + s2βImλ̄7), (51)

where λ̄5,6,7 depend on the finite term corrections to the
leading logarithmic result which appear from the one-loop
diagrams with trilinear couplings. The analytical represen-
tation of [5] has the form

λ̄5 = − 3
192π2h

4
t

µ2A2
t

M4
SUSY

[
1 − 1

16π2 (2h2
b − 6h2

t + 16g2
s)t

]

− 3
192π2h

4
b

µ2A2
b

M4
SUSY

[
1 − 1

16π2 (2h2
t − 6h2

b + 16g2
s)t

]
,

4 For a rewiev see e.g. [26]
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Fig. 1. Masses of the neutral and
charged Higgs bosons h, H, H± versus
the pseudoscalar mass mA and the tri-
linear constants At, Ab calculated by
means of (31)–(33) with the analyti-
cal λ̄i (i = 1, · · · , 7) parameterization
of [5]. The ∆λ̄5 is chosen to be posi-
tive. The CP -conserving limit θ = 0
is taken. (a) tgβ = 4, MSUSY = 0.5
TeV, At = Ab = µ = 0; (b) tgβ = 4,
MSUSY = 0.5 TeV, At = Ab = 0.9
TeV, µ = −1.5 TeV; (c) tgβ = 4,
MSUSY = 0.5 TeV, mA = 220 GeV,
µ = 0, At = Ab; (d) tgβ = 4, MSUSY =
0.5 TeV, mA = 220 GeV, µ = −2 TeV,
At = Ab. Very small variations of the
charged Higgs boson mass mH± in (d)
are due to the cancellation of the lead-
ing power terms ∼ µ2A2

t,b/M
4
SUSY, see

[5], in the difference of ∆λ̄4 and ∆λ̄5;
see (33). If ∆λ̄5 is chosen to be nega-
tive (purely imaginary µA in (50)), mH

increases in comparison with the case
At = Ab = µ = 0

λ̄6 =
3

96π2h
4
t

|µ|2µAt

M4
SUSY

×
[
1 − 1

16π2

(
7
2
h2

b − 15
2
h2

t + 16g2
s

)
t

]

− 3
96π2h

4
b

µ

MSUSY

(
6Ab

MSUSY
− |Ab|2Ab

M3
SUSY

)

×
[
1 − 1

16π2

(
1
2
h2

t − 9
2
h2

b + 16g2
s

)
t

]
,

λ̄7 =
3

96π2h
4
b

|µ|2µAb

M4
SUSY

×
[
1 − 1

16π2

(
7
2
h2

t − 15
2
h2

b + 16g2
s

)
t

]

− 3
96π2h

4
t

µ

MSUSY

(
6At

MSUSY
− |At|2At

M3
SUSY

)

×
[
1 − 1

16π2

(
1
2
h2

b − 9
2
h2

t + 16g2
s

)
t

]
. (52)

At,b and µ are the factors in front of Higgs–squark(left)–
squark(right) trilinear terms, MSUSY is the SUSY energy
scale, mtop, mb are the on-shell running masses of the
third generation quarks, and t = log(M2

SUSY/m
2
top), ht =

(
√

2mtop)/(vsβ), hb = (
√

2mb)/(vcβ), gs = (4παs)1/2.
The trilinear parameters At, Ab and µ of the Higgs boson
interaction with the third generation squarks can be, gen-

erally speaking, complex. In this case the λ̄i, i = 1, · · · , 7
parameters of the two-doublet-Higgs potential are defined
by tgβ, the SUSY scale MSUSY, and six relevant para-
meters in the sector of the Higgs boson interaction with
the third generation squarks: µ, arg(µ), At, arg(At), Ab,
arg(Ab). In the following consideration for simplicity we
assume |At| = |Ab| and assign the universal phase θ to µAt

and µAb so that θ = arg(µAt) = arg(µAb). Then using the
explicit structure of (50), the CP -invariance conditions

(39) can be rewritten in the form Im(
∗
µ

2

12 µA) = 0 [5].
The couplings of W and Z bosons to the h1, h2, h3

scalars have the form

Vµ Vν h1 fV gµν(cα−βa21 − sα−βa11),
Vµ Vν h2 fV gµν(cα−βa22 − sα−βa12),
Vµ Vν h3 fV gµν(cα−βa23 − sα−βa13),

where V = W,Z, fW = (e/sW)mW and fZ = (e/(sWc2W ))
mW . The couplings of the h1, h2, h3 bosons to the t and b
quarks have the form

t̄ t h1 ft
1
sβ

(sαa21 + cαa11 − icβa31γ5),

t̄ t h2 ft
1
sβ

(sαa22 + cαa12 − icβa32γ5),

t̄ t h3 ft
1
sβ

(sαa23 + cαa13 − icβa33γ5),
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Fig. 2. Masses of the neutral Higgs
bosons and the mixing matrix elements
as a function of the λ̄6 and λ̄7 phase.
The λ̄i parameters are taken from [5] at
the MSSM parameter values tgβ = 4,
mA = 220 GeV, MSUSY = 0.5 TeV,
At = Ab = −1.8 TeV, µ = −2 TeV

b̄ b h1 fb
1
cβ

(cαa21 − sαa11 − isβa31γ5),

b̄ b h2 fb
1
cβ

(cαa22 − sαa12 − isβa32γ5),

b̄ b h3 fb
1
cβ

(cαa23 − sαa13 − isβa33γ5),

where ft,b = (−e/(2sW))(mt,b/mW ).
The Higgs boson mass spectrum of the CP -conserving

limit θ = 0 (in this limit aij = diag{1, 1, 1}) is shown in
Fig. 1. For the case of explicit CP -violation in the two-
doublet-Higgs potential we take the parameter set µ =
−2 TeV, At = Ab = −1.8 TeV, MSUSY = 0.5 TeV, mA =
220 GeV, tgβ = 4, which is typical for the region of MSSM
parameter space where the imaginary parts of λ̄5, λ̄6 and
λ̄7 are large (of the order of 0.1–1) 5. We demonstrate in
Fig. 2 the neutral Higgs boson masses given by (47) and
the mixing matrix elements aij as a function of the univer-
sal phase θ = arg(µAt,b). The Higgs boson masses of the
CP -conserving limit are substantially changed when the
phase θ is not small. The mh1 in Fig. 2 is always smaller
than mh, and mh2 has a downfall at the phase values
around π/4. The Higgs-vector boson WWhi, ZZhi and

5 A detailed discussion of possible combined constraints on
the MSSM parameter space from cosmology, direct searches
and indirect measurements (rare decays) can be found in [27]

the Higgs–fermion qq̄hi (q = t, b) interaction vertices as
a function of the phase θ are shown in Fig. 3. One can
observe that the h1 couplings to the gauge bosons W,Z
decrease by about 15% if the phase of λ̄5, λ̄6, λ̄7 is large
enough. Non-zero couplings of h3 to the gauge bosons ap-
pear. The changes of the bb̄h1 and the bb̄h2 coupling regime
are also rather pronounced (see Fig. 3). In the region of
MSSM parameter space where the mh3 is around 150–
250 GeV and the µ and At,b parameters are of the order
of TeV, we have the regime of strong mixing in the Higgs
sector. As a result the light Higgs boson h1 could have not
been observed at LEP2 (

√
s = 200 GeV) in the produc-

tion channels e+e− → h1Z, e+e− → νeν̄eh1 because of
the suppressed couplings to the gauge bosons, while the
h2, h3 bosons are sufficiently heavy to be not produced on
mass-shell at the LEP2 energy. A detailed analysis of this
scenario can be found in [5,6].

5 Triple and quartic Higgs boson couplings
in the MSSM with explicit CP -violation

In the regions of the MSSM parameter space where the
couplings of the lightest Higgs boson h1 to the gauge
bosons and top quark are suppressed, the traditional chan-
nels of Higgs boson production by radiation from a W,Z
or t line and WW,ZZ fusion can have too small a rate to
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Fig. 3. Higgs–gauge boson and Higgs–
fermion vertex factors as a function of
the λ̄6 and λ̄7 phase. The λ̄i para-
meters are taken from [5] at the MSSM
parameter values tgβ = 4, mA = 220
GeV, MSUSY = 0.5 TeV, At = Ab =
−1.8 TeV, µ = −2 TeV. For the cou-
pling with fermions we plot (Im2gffh +
Re2gffh)1/2

be experimentally observed. For this reason it is interest-
ing to consider the possibility of double Higgs production
(like gg → h2 → h1h1) defined by the self-coupling ver-
tices. Such calculations are known in the CP -conserving
limit [8], when the cross sections of double and triple Higgs
boson production turn out to be very small. Only some of
them are accessible for observation at high luminosity col-
liders. In the case of CP -violation some self-couplings may
be substantially increased, providing better opportunities
for the experimental reconstruction.

The λ̄5, λ̄6 and λ̄7 potential terms can modify sig-
nificantly the Higgs boson self-interaction vertices calcu-
lated in the leading one-loop approximation with λ̄i =
0 (i = 5, 6, 7). At the next-to-leading order approxima-
tion the λ̄i couplings (50) include terms of the order of
h4

t,bµ
2A2

t,b/M
4
SUSY and h4

t,bµAt,b/M
2
SUSY, so they can reach

values of the order of 0.1–1 at moderate values of MSUSY
and µ and At,b taken at the TeV energy scale. For exam-
ple, in the CP -conserving limit θ = 0 the hhh vertex in
the mass parameterization has the form

ghhh =
3e

mW sWs2β
[−(cβc3α − sβs

3
α)m2

h + c2β−αcβ+αm
2
A

+ c2β−α(λ̄5cβ+α + λ̄6cβsα − λ̄7sβcα)v2]. (53)

The contributions of the λ̄5,6,7-terms and the m2
h,A-terms

in this expression are of the same order if λ5,6,7 ∼ O(1).
The rotation of the θ = 0 mass eigenstates by the matrix

aij defined by (45) gives the gh1h1h1 vertex a different
form but also it has substantial contributions of the λ̄5,6,7-
terms.

Using the parameter set described in the previous sec-
tion, we show the values of various triple and quartic Higgs
boson self-interaction vertices as a function of the univer-
sal phase θ = arg(µAt) = arg(µAb) in Fig. 4. The val-
ues of the Higgs boson self-interaction vertices in the CP -
conserving limit θ = 0,π and in the leading order approx-
imation λ̄5 = λ̄6 = λ̄7 = 0 are marked in Fig. 4 by hori-
zontal arrows. The λ̄5, λ̄6 and λ̄7 potential terms induced
in the next-to-leading order approximation introduce very
large corrections to the triple and quartic self-interactions
of Higgs bosons. In the region of the MSSM parameter
space under consideration the difference of the leading or-
der and the next-to-leading order vertex factors can be
several times in some ranges of the phase variation.

6 Summary

We demonstrated the tree-level equivalence of the two-
Higgs-doublet model potentials (1) and (9), where CP -
invariance may be explicitly broken by the λ6-term in (1)
or by the complex µ2

12-, λ̄5-terms in (9). The parameters
λi (i = 1, · · · , 6) of (1) and µ2

1, µ
2
2, µ

2
12, λ̄i (i = 1, · · · , 5)

of (9) are related by (10). In the case of real parameters
the diagonalization of the potential (9) in the ground state
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Fig. 4. Triple and quartic Higgs bo-
son vertex factors as a function of
the λ̄6 and λ̄7 phase. The λ̄i para-
meters are taken from [5] at the
MSSM parameter values tgβ = 4,
mA = 220 GeV, MSUSY = 0.5 TeV,
At = Ab = −1.8 TeV, µ = −2
TeV. Horizontal arrows indicate the
values of vertex factors in the CP -
conserving limit θ = 0 and the lead-
ing order approximation λ̄5 = λ̄6 =
λ̄7 = 0

can be performed by means of the substitutions (14)–(20)
which express the λ̄i and µ2

1, µ
2
2 parameters through the

Higgs boson massesmh,mH ,mA,mH±, the mixing angles
α, β and the µ2

12 parameter. In the general case the λ̄6 and
λ̄7 potential terms (21) should also be considered with the
diagonalization and minimization conditions (22)–(28). If
the complex parameters µ2

1, µ
2
2, λ̄i (i = 1, · · · , 7) and µ2

12
are introduced, CP -invariance of the hermitian potential
(37) is explicitly violated at the tree level unless the fine-
tuning conditions (38) or (39) for the parameters are satis-
fied. So in the following we consider the problem of diago-
nalization in the local minimum for the two-Higgs-doublet
potential which is not CP -invariant. For the diagonaliza-
tion of the potential (37) again we use the substitution
(22)–(28) to be taken for real parts of parameters. The
minimization of potential (37) at the tree level occurs with
the condition c0 = 0 (43) for the imaginary parts of para-
meters. The imaginary parts of λ̄5, λ̄6 and λ̄7 give rise
to the CP -odd/CP -even Higgs boson off-diagonal terms,
which are removed by the orthogonal rotation in (h,H,A)
space, giving mass eigenstates h1, h2, h3 without definite
CP -parity and with the mass spectrum and couplings
substantially different from the masses and couplings of
the CP -even and CP -odd states h,H,A, if the imaginary
parts of the parameters λ̄5, λ̄6 and λ̄7 are sufficiently large.

In the framework of MSSM the real parts of the λ̄i (i =
1, · · · , 5) parameters are fixed at the SUSY energy scale by
the conditions (29). Radiative corrections to the λ̄SUSY

i
(i = 1, · · · , 7) parameters are generated at the mW energy

scale. Equations (31)–(33) express the mixing angle α and
the masses of the Higgs bosons in terms of the radiative
corrections to λ̄SUSY

i (i = 1, · · · , 7) couplings (e.g. given
by the RG evolution). They are valid independently on
the particular scheme which is used for the calculation of
the radiative corrections to the λ̄SUSY

i (i = 1, · · · , 7).

In the next-to-leading order approximation the com-
plex λ̄5, λ̄6 and λ̄7 parameters are generated by the soft
CP -violating Yukawa interactions of Higgs bosons with
the scalar quarks. Using the results of [5] we calculated the
Higgs–gauge boson, Higgs–fermion and the Higgs triple
and quartic couplings for a representative MSSM para-
meter set, when the off-diagonal elements of the Higgs
boson mixing matrix are large. The λ̄5, λ̄6 and λ̄7 para-
meters introduce significant corrections to the Higgs self-
interaction, even in the case when their effects on the
Higgs–gauge boson and Higgs–fermion couplings are
rather small. These corrections could rather strongly (by
one–two orders of magnitude in comparison with the case
of CP -conservation) enhance or suppress some channels of
multiple Higgs boson production at future colliders, pro-
viding discriminative tests of CP -violation in the Higgs
sector and improved feasibility to reconstruct experimen-
tally the Higgs potential.
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