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Abstract. We consider the two-Higgs-doublet model with explicit C'P-violation, where the effective Higgs
potential is not CP-invariant at the tree level. The three neutral Higgs bosons of the model are the
mixtures of C' P-even and C' P-odd bosons which exist in the C P-conserving limit of the theory. The mass
spectrum and tree-level couplings of the neutral Higgs bosons to gauge bosons and fermions are significantly
dependent on the parameters of the Higgs boson mixing matrix. We calculate the Higgs—gauge boson,
Higgs—fermion, triple and quartic Higgs self-interactions in the MSSM with explicit C P-violation in the
Higgs sector and C'P-violating Yukawa interactions of the third generation scalar quarks. In some regions
of the MSSM parameter space substantial changes of the self-interaction vertices take place, leading to
significant suppression or enhancement of the multiple Higgs boson production cross sections.

1 Introduction

A general interest in the models with two (and more)
Higgs doublets is maintained by the absence of a con-
vincing argument in favor of only one generation of Higgs
bosons when there are three known generations of fun-
damental fermions. Models with an extended Higgs sec-
tor provide richer physical possibilities than the standard
scheme with one doublet. One of them is the possibility to
introduce C P-violation beyond the Cabibbo—Kobayashi—
Maskawa (CKM) mechanism, by means of the Higgs boson
exchange amplitudes with complex Higgs boson—fermion
vertices. Complex couplings can be generated either spon-
taneously [1], when the vacuum expectation values of the
Higgs fields are complex and the couplings of the CP-
invariant tree-level Higgs potential are real, or explicitly
inserted [2] on the level of SU(2) x U(1)-invariant poten-
tial terms, when the complex vacuum expectation values
of the scalar fields correspond to the minimum of the her-
mitian potential with complex parameters, which is not
CP-invariant (CP-invariance softly broken by the mass
terms).

Various representations of the SU(2) x U(1)-invariant
two-doublet Higgs potentials have been considered in the
literature. The two-doublet models with spontaneous C P-
violation [1,3] make use of the potential of the general
structure —up? + Ap* without the dimension two j2,-
terms. Models with explicit C'P-violation use either the
potential with trivial minimization [2,4], or the potential
with complex parameter 2, of the dimension two terms
and complex parameters A5, Ag and A7 in front of the di-
mension four potential terms [5,6], similar to the effective

potential of the minimal supersymmetry (MSSM). The
standard transformation (diagonalization) procedure from
the level of primary fields which are the components of
scalar doublets in SU(2) x U(1)-invariant potential terms
(SU(2) x U(1) eigenstates) to the physical fields (mass
eigenstates) of the Higgs bosons should be consistently
performed to respect the SU(2) x U(1) invariance and
the minimization of the potential. We consider the di-
agonalization for the two different two-Higgs-doublet po-
tential forms in great detail. A special case of the gen-
eral two-Higgs-doublet model is represented by the Higgs
sector of MSSM. Substantial radiative corrections to the
Higgs boson masses and couplings are induced at the mz
scale mainly by the third generation quarks t, b and the
third generation scalar quarks [7]. In the special case of
MSSM the multiparameter space of the general two-Higgs-
doublet model is significantly reduced, providing possibili-
ties of much less ambiguous phenomenological predictions.

Phenomenological consequences of the CP-violating
Higgs—third generation squark Yukawa interactions in the
Higgs—fermion and the Higgs—gauge boson sectors have
been considered in [5]. We focus mainly on the self-inter-
actions of the Higgs bosons. Experimental observation of
the scalar boson signals should be followed by the verifi-
cation of the Higgs mechanism as the essence of the gauge
boson and fermion mass generation. Self-interactions of
the Higgs fields lead to a non-trivial structure of the vac-
uum state with non-zero (and possibly complex) field ten-
sions, initializing the spontaneous breakdown of SU(2) x
U (1) symmetry. The reconstruction of the Higgs self-inter-
action potential from the data on multiple (mainly double



224

and triple) Higgs boson production cross sections [8] re-
quires the experimental measurements of triple and quar-
tic Higgs boson self-interaction vertices, which is a non-
trivial but valuable task for future high luminosity collid-
ers, such as LHC and TESLA.

In Sect.2 we discuss the diagonalization of the CP-
invariant Higgs potential, represented in two different
forms, in the general two-Higgs-doublet model (THDM),
and we consider the special case of the Higgs sector in min-
imal supersymmetry (MSSM). In Sect. 3 we introduce the
complex parameters of the SU(2) x U(1) invariant poten-
tial terms and discuss the diagonalization of the THDM
potential which acquires explicit C' P-violation. In Sects. 4
and 5 we calculate the Higgs—gauge boson, Higgs—fermion
and Higgs self-couplings in the MSSM with C'P-violation.

2 Diagonalization of the mass matrix
in the general two-Higgs-doublet model

Two representations have been used for the two-doublet
Higgs potential. The first representation [2,4],
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where the A; are real constants, and the SU(2) doublets
(1,2 have the components

. 1 .
Y1 = {—1wf—, ﬁ(vl +h1 +1Z1)},

gy = {—iw;, %(’Ug +hy + 122)} : (2)

wy,2 are complex fields and z; 2, hy 2 are real scalar fields.
At positive Aq, - - -, Ag each term of the potential V (o1, ¢2)
is obviously positive and its zero minimum is achieved if
the vacuum expectation values of (¢1), (p2) are taken in
the form

1 1
\ﬁ <¢2>_ﬁ

In the case of A5 = g (corresponding to the C'P-conserv-
ing MSSM-like potential, see below) the last two terms in
(1) form the modulo squared, and the phase £ can be re-
moved from the potential by a U(1) rotation of 2, which
does not affect minimization. In this section we will con-
sider the case A\s # Ag, & = 0. Substitution of (2) into
(1) gives a bilinear form of the mass term with mixed
components w;, h;, z;, which can be diagonalized by an

<<P1> = {0,1)1}, {07")2616}' (3)
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orthogonal transformation of the fields in order to define
the tree-level masses of the Higgs bosons. In the CP-
conserving case the potential terms involving the zq, 2o
fields from the imaginary parts of the 1, 2 doublets and
the hq,ho fields from their real parts do not mix, so the
mass terms are diagonalized by separate two-dimensional
rotations of the 21, zo and the hy, ho fields. The resulting
spectrum of scalars consists of two charged H*, three neu-
tral h, H, A° scalar fields, and three Goldstone bosons G.
This procedure is described in many papers (for instance,
[4,9]). The ws 2 sector is diagonalized by the rotation of
wy,wy — H, G:

wE = —HFs3+ G¥ey, wi=HYcg+GFsp,  (4)

defined by the angle
V2
tgf = — 5
gf = (5)

and leading to the massless G field and the field of the mas-
sive charged Higgs boson H*, m%, = A\s(v? +v2)/2. The
21,2 sector is diagonalized by the rotation z;, zo — A%, G
defined by the angle 8 and giving again one massless field
G’ and the field of a C'P-odd Higgs boson A% with the
mass m% = \g(v} +v3)/2. Finally, the hq, ho sector is di-
agonalized by the rotation hq,ho — h, H defined by the
angle a:

. 2maa
sin2a = =
V(mi —ma2)? + 4mi,
cos2a = L~ Moz (6)

V(mis —ma2)2 + 4m3,’

where

1
mi1 = 1[4’0%()\1 + )\3) + ’U§>\5],

1
Mmoo = 1[411%()\2 + )\3) —+ ’U%)\s],

1
mip = 1(4/\3 + As)v102,

giving two massive fields of C'P-even Higgs bosons H,h
with masses

m?q,h =mq1 +magy £ \/(mn — mag)? + 4m3,. (7)

The diagonal mass term of the scalar fields and their triple
and quartic self-interaction vertices can be explicitly ob-
tained by the substitution of the following expressions for
A; into the potential V (1, p2) (1):

1 1 [s, Co c23
M= | Zeapmi — Zsq_gm%y| + —=\
T 22 3 [55 amBh T ggTel H} 4c3 >
1 1 [cq Sa Cap
Ao = —=— | 2Cagm? + Lsa_gm? | — —=Ns,
2 2@252{0[3a5 h+cﬁa6 H 45%5
1 S2a 9 S2a 92 1
A3 = — |———m5; + —m3y| — - Xs,
3T 92 [ S28 h S8 H 470
2 2
)\4 = U—Zm%{i, >\6 = Ufzmio, (8)
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where we used the notation v? = v? + v2, s, = sinq,

Co = cosa. Diagonalization of the mass term takes place
for arbitrary A5, which is a free parameter of the model.
The second representation of the Higgs potential,

U, p2) = =13 (1 1) — 13 (3 02)

— 135(0T 2 + 03 1)

+ Aot 01) + Xa(03 02)° + Az 01)(05 ©2)
+ (e 2) (93 ¢1)

+ %[(@f%)(@fsﬂz) + (oF 01)(0F @1)], (9)

originates from the general SUSY action after the integra-
tion over Grassman variables and introduction of the soft
SUSY-breaking terms (see [4]). It is easy to check that the
potentials (1) and (9) are equivalent if the parameters \;,
u3, 43, 43, and \; are related by the formulae

A=A+ A3, A=A+ A3, A3 =223+ )y, (10)
_ A A - A A V1V
and

U3 = Mui N30T FA303,  pa = Agvs + 303+ Azvs. (11)
Unlike the potential (1) where the minimization is obvi-
ous, the symbolic structure of (9) does not demonstrate
evidently its minimum. The substitution of (2) into (9)
gives linear terms in the component fields z; 2, h1 2 (or the
physical fields h, H, A) and unless some additional condi-
tions to remove the linear terms are imposed, we are not
in the minimum of the potential. So (11), which set to
zero the terms which are linear in the component fields,
are the minimization conditions. The diagonalization of
U(e1, p2) takes place for arbitrary parameter y?,.
The inverse transformation (10) has the form
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Aa= ="+ + s =—A1— A5 + As,

e = —25\54-/\5 (12)
so the masses of the C'P-even scalars and their mixing
angle a (6) and (7) in the case of the potential U(p1, ¢2)
can be easily obtained using
— — MQ
mi1 + Moz = U%/\l + U%/\Q + ﬁ,
S253
_ 23 25 2
mi1 — Mg = VA1 — V3 A2 — ctg28u7,,
2mio = 1}11}2()\3 + A4+ )\5) — ,LL?Q. (13)
The diagonal form of U (1, p2) and the physical scalar
boson self-interaction vertices are obtained by substitution
of the following expressions for \; and p; into (9):
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The conditions (14)—(18) ensure the diagonal form of the
mass term expressed in the physical fields h, H, A, H* and
(19) and (20) are the minimization conditions. Two para-
meterizations for the Higgs boson self-interaction vertices
can be used in THDM. In the first parameterization [10]
u3, is a free parameter and \s is defined by (18). In the
second one A5 is a free parameter and u?, is equal to
sgca(v? A5 + m?). Complete sets of Feynman rules (uni-
tary gauge) for the triple (4%, and A5 parameterizations)
and quartic (u2, parameterization) Higgs boson interac-
tions in the general two-Higgs-doublet model with CP-
conservation are shown in Tables1 and 2'. In the case of
the MSSM potential at the scale Mgygy (see (29)) As =0
and it follows from (8), (10) and (11) that p?2, is fixed and
equal to m%sgcgs.

Two additional terms of dimension four can be con-
structed using the complete set of SU(2) x U(1) invariants
0T 01, 03 2, Rep] p2 and Imy @2 (a detailed discussion
of all possible potential forms can be found in [12]). These
terms are usually added to the U(yp1, p2) with the para-
meters A\g and A7

Ulpr, p2) = Ul ¢2)
+ X6 (01 01)[(07 02) + (03 ¢1)]
+ M (3 2)[(71 02) + (03 1))

The diagonal form of U(p1,¢2) at the local minimum
takes place at arbitrary p2,, g, A7 and can be achieved by
means of the substitution (14)-(20) with additional As-,
A7-terms on the right-hand side:

2 2
3 1 Sa 2 Ca 2 S8 2
AN = — = il _ 22
LT og2 l(cB) M+ <Cﬁ M c% Hiz

1 - _
+ 10\7‘6%35 — 3Xetgf),

(21)

(22)

! These sets were obtained by means of the LanHEP pack-
age [11], see http://theory.sinp.msu.ru/~semenov/lanhep.html
Six misprints in the sign of the second term in the fac-
tor (cics — sisg) that occur in [10] are corrected in Ta-
ble 3 in the expressions for the vertices hhhh, AAAA, hhAA,
HYH H"H-, H"H AA, H"H™hh
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Table 1. Triple Higgs boson interaction vertices in the general two-Higgs-doublet
model, p12 parameterization

Fields in the vertex  Variational derivative of Lagrangian by fields

3 2 2 2
h h h Ws\%[ s26(cics — sasp)mi, + 2ca_ 5CatBH12]

H H H MWE#[ s25(chsp + shcg)mi + 282 gSa+pliia)

H H h QM?#SB[ (2m% + m})s2a525 + 4(35aca + s5¢5) uls]

H h h M;%[(mlf +2m3 ) s2a528 — 4(35aCa — S5Ca) Uis]

H A A W[SQQ(SQCB + CQSB)mH + Sgﬁca ﬁmA — 2504+ﬁ#12]
h A A W[sw(sasg CaCh)My + $555a—pmA + 2Ca+p/iio]

h HY H™ m[s%(sasﬁ — CaCh)M], + $355a—pMars + 2Catplils]
H HY H- W[Szg(sacﬁ + caSB)ME + $35Ca—pMirs — 28atpiis)

Table 2. Triple Higgs boson interaction vertices in the general two-Higgs-doublet
model, A5 parameterization

Fields in the vertex Variational derivative of Lagrangian by fields

hh h W&,sw[*(cgcﬁ — sasp)mi, + ch_gCats(mh + 02 )s)]
H H H m[—(caé‘ﬁ + saca)mi + sa_gsatp(mi + v°2s)]
H H h ijﬁ[—(zmlf +m3)s2a + 2(35aca + sgcs)(mi + v7As5)]
H h h —Wzvc‘%vfszﬁ[(mlf +2m3) 820 — 2(38aCa — s5c) (M4 + v2X5)]
H A A —m[(sacﬁ + casB)ME + C28Sa—pMA — SatsV’As]
h A A M[(sasg — caCl)Mm} + c2pCa—pmi + Cat sV’ As]
h HY H™ m[(sas% — caCy)M], + Sa—pmips + catp(mi +v32s))
H HY H™ fm[(sac% + CasB)ME + Ca—pmips — Satp(Mmi + v°Xs5)]
< 1 Ca 2 9 Sa 2 9 cﬁ 9 Our expressions for the redefined A4 and )5 are the same
=gm\s,) ™G, ) M s34 as given in [13].
The potentials (1) and (9) can be reduced to the MSSM
+ 1(;\6ctg3ﬂ — 3A7ctgf), (23) potential in some regions of the parameter space which
4 - we are going to discuss. The potential V' (1, p2) (1) has
v 1 9 Uy 520, o 9 A6 eight parameters: two VEV’s; vy, v, and six couplings, \;
Ag = 02 [QmHi  spes + %(mH —mi) |~ 7ctg6 (i =1,---,6). Eight parameters of the potential U (1, ¢2)
X in (9), p1, o, p12 and A; (¢ =1,---,5), can be found us-
— ZTte8, (24) ing (10) and (11). From the other side, in the Higgs sector
2 ) _ _ we have eight physical parameters: the mixing angle 8 and
3 L [ pio 2 2 A6 A7 W-boson mass myy, the mixing angle o, the parameter 2
A\ = — —92 — 2t — W g g ) p H12
4 (3505 i M ctgfd &b, and four masses of the scalars my, mgy, ma, mg+. The
(25) Mw is fixed experimentally maintaining the constraint on
5 - - the vy,v2, v2 = 0¥ + v3 = 4mi, /e? - sin?6w which fol-
s = 1 ( P12 mi) _ ﬁctgﬁ _ ﬁtgﬁ, (26) lows from the Higgs kinetic term D, p D"y (g = e/sinfw;
spCp 2 2 Ow is the Weinberg angle). So the Higgs sector of THDM
s« o R ) with the potentials (1) or (9) is described by a seven-
pi = Aoy + (A3 + A+ )\5)5 — piotgsl dimensional parameter space. In the case of the superpo-
0252 tential five additional constraints are imposed, relating all
+ ?5(35\6@%3 + Artgh), (27) Higgs boson self-couplings A;, (i=1,---,5) to the gauge

, coupling constants at the energy scale Msygy [14]:

- - - - v
115 =Aav3 + Az + A+ )\5)?1 — p3pctgf

022 ASUSY _ \SUSY _ 9° + gt ASUSY 9> — gt
+ —5 (Aoctgl + BArtgh). (28) 2 3 1
ASUSY - T 3SUSY g (29)

2 )
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Table 3. Quartic Higgs boson interaction vertices in the general two-Higgs-doublet model, p12

parameterization

Fields in the vertex

Variational derivative of Lagrangian by fields

: 2 3 3 2,2 2 2 2 2 2 2
h h h h 567233[,[4525(0“05 — 5,58)"My, + 523550 CogME — 8Co_5Caypliz]

_ZM‘%VS
2
H H H H 3__e
4 M3, 2,53,
A0 A0 A9 A°

2
3 €7s2a8a—p

3 3 2, 2 2 2 2 2 2 2
[—4s25(casp + Sacs) M + 52852056 sMh + 855 Sa+siia]

2 3 312, 2 3 312, 2 2 2
_ m[sw(sacﬂ + casg) mirs26(cacs — Sasp) Mi, — 2c35112]

H H H h 407,23, [2525(c3 55 + s3.co)m3; + s25520Ca—pmi — 45at8]pi2
H h h h —%%[252;}(0365 — 8355)m7 + 52852050— M3 — 4Cartpllila
H H h h —iﬁ%sgﬁ[—swsm(%gasi,ﬁ — 480 3Catp — 250+ 350—3Ca—p )My
+52552a (825 + 352055 g)mi — 8(3saca — s5CE)pta)
H H A° A° im[—%zﬁsmsa,g(cacg — sas%)mi — 2sggci,ﬁmi
—525(520520 + 355_ 5oy — S2050—5)ME + 4(C3g5a_g5 + Sayp)iia]
h h A° A° iW%[—sgﬁM@gcza + 352 _pSoip + Sa_p)mi — 283550 zmA
—282ﬂ52aca,g(sacg + casz)m% + 2(s§gs§_6 + 4(cacg — 5&5%)2)11/%2]
H A° A° h iﬁ%sgﬁ[—QSz@SQaCa,ﬂ(caC% — SaS3)Mj + S35Sa—pCa—pmi
—282ﬁ52asa,g(5ac% + casg)m% + 2(2s2aC28 — 52ng,@ca,g)u%2}
Ht HY H- H- —QWQS%[SQ@(CQC% — SasB)mi, + s28(sach + cash)mir — 2¢33170]
H™ H- A" A° _W;S%[SQﬂ(CQC% — SasB)mi, + s28(saCh + cash)mir — 2¢331)
HY H h h iﬁ%sgﬁ[—szg@lcmcw + 352 _pSaip t+ Se_p)mi — 283550 sMips
—ZSQﬂSQQCQ,B(sacg + cas%)m% + 2(5%55i,@ + 4(cac?5 — sas%)Q;ﬁQ]
HY H- H H iﬁ%s%[—%mszasa,ﬂcac% — sasg)m% — 25§5ci_ﬁmzi
+525(52a525 — 35a_pSats + Sa_p)my +4(c3a5a_5 + say )itz
H Ht H- h %m[—swshca,g(cacg — sasf’;)mi + sgﬁsafgcafgmi[i

—smszasa,g(cas% + sacf’;)m%{ + 2(2s2ac28 — sggsa,@ca,g)ufz}

It follows that the four Higgs boson masses and the two
mixing angles are defined by two independent parameters.
One can choose, for example, the 71, ry parameterization
[15] (r12 = m3 ;;/m%) or the well-known m 4, tg3 para-
meterization. In order to reduce the general two-Higgs-
doublet model vertices to MSSM at the scale Mgygy it is
convenient to use the «, 8 parameterization:

Sa+ Ca+
= mbeny Sy = ey 22,
o— o—
S
m% =my— 0 2 = mPsscs. (30)
52(a—8)

Substitution of these expressions to the vertex factors in
Tables 1 and 2 after trivial trigoniometric transformations
reduces them [10] to simpler MSSM factors [4]. However,
(30) are no longer valid at the energy scale my, where the
X?USY couplings and the masses of the Higgs bosons are
significantly changed by radiative corrections and the ef-
fective two-Higgs-doublet potential should be described in
the complete seven-dimensional parameter space. Practi-
cal calculations of the radiatively corrected masses and/or
couplings can be conveniently carried out using the re-
sults of the two approaches, the renormalization group
(the HMSUSY package [16] or the analytical representa-

tion [17]), and diagrammatic (the FeynHiggsFast pack-
age [18]). Two different parameterizations can be used for
these approaches.

In the RG approach it seems convenient to use the two-
Higgs-doublet model parameter space m 4, tg3, A1, - -, As.
In the following we shall take into account the Ag- and A7-
terms defined by (21), so the parameter space will be nine-
dimensional. The RG evolution of the coupling constants
\; from the energy scale Msysy to the electroweak scale
my defines the A1, - -, A5 in (22)-(26) and the parameters
X6, 7. At a given m 4, tgf3, Xg, A7 the parameters p2, and
mpy+ are fixed by the conditions (25) and (26), the para-
meters p3 and p3 are fixed by (27) and (28), and «a, my,
and mpy can be found using (22)—(24). If we denote the
deviation from the coupling ASUSY at the MSSM scale by
A)\i7

2(;\§ESY —A12) = A)p o, XEHSY —A34 = AXz 4,

X567 = AXs 6.7,
we find the mixing angle (introducing the notation g? +
' ): g*m%/m¥,, ¢* — g = g*(2 — m%/m3,) while using

(31)
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sog(m? +m%) +v2((AXz + Axg)sag + 2C%AX6 + 25%AX7)
625(7n?4 — mQZ) + UZ(ASQC% - szs% — AXseag + (AXg — AX7)5213)7

C P-even Higgs boson masses and the u?, parameter

2 _ 2 2 2 2
My = Coy My + 5,_gM4

— 2 (Af\lcic% + Adas? sh

(32)

+ 2(AX3 + AXy)cacssass

+ AXs(c 85 +s cﬁ)>

+ 250+8(AXsCacs + AX78a55),
m% = siJerQZ + ci,ﬁmi

— 2 (Af\lsic% + Adoclsh

— 2(AXs + A5\4)ca(:gsa35

+ AXs(s2 55 +c CB)>

— 2Cat8(AN6Sacs — AX7cass),

mZ. =m2y +md — %(Axg, — AN, (33)

2
1y = spcs {mi - %(2A5\5 + Adgetg3 + Alrtgf)

with the minimization conditions

5 1

2
= —M,C
M1 9"z 203

2
v — — — — —
-5 [AX1ch + (AXs + ANy + AXs)sh + 3ANsspeg

- M%ztgﬂ

3
- s
+ AN
B
2 L o 2
Ho = —5MzC2s — piactgl

v2 - - - - _
— 5 [ Ahesh + (Ads + Ada+ Aks)ch + AA68—5
B

+ 3AA7sgeg] - (34)
These expressions can be straightforwardly used to calcu-
late the radiatively corrected masses of Higgs bosons and
the mixing angle « in the MSSM with the help of a so-
lution of the RG equations for Aq,---, A7. Apparently, in
the RG approach Feynman rules in terms of \; couplings
are more convenient than rules in terms of Higgs particle
masses.

In the diagrammatic approaches to the calculation of
the radiatively corrected masses [18] the corrections to my,
mpyg, mya and mg+ are extracted from the renormalized
Higgs boson self-energies (usually radiative corrections to
only the C'P-even Higgs boson masses are calculated). The
set of 7 4 2 independent parameters inherent for the di-
agrammatic approaches could be m4, tgs, a, uu, mp,
mH7 mpy+, and Ag, A7. At a given mg4, tgB, Ag, A7 the
p3, parameter can be fixed at the value m%sgcs, and
«a can be calculated using the renormalized self-energies
correction [18] to the relation valid at the Mgysy scale
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m% +m3 = —SQQ/SQﬁ(mH — m2). Then )\ is defined
by (25) and Aq,---, A3 can be found using (22)—(24). In
the diagrammatic calculations Feynman rules in terms of
the radiatively corrected Higgs boson masses look more
natural. A substitution of the radiatively corrected Higgs
masses to the tree-level Higgs vertex factors is expected
to give results very close to those obtained from the loop
corrections to the Higgs vertex at the SUSY scale (see the
discussion in the last of [8]). It has been shown in [19] by
the example of hhh and hhhh vertices (and for the case
of a diagonal third generation squark mass matrix) that
large radiative corrections to the vertex factors calculated
diagrammatically can be absorbed in the radiatively cor-
rected Higgs boson masses.

Other parameterizations in the two-Higgs-doublet
model are of course possible, but they should be care-
fully introduced to respect the minimization and diago-
nalization conditions (22)—(28). The introduction of scalar
particle masses and mixing angles inconsistent with them
violates either the diagonalizaton of the potential or its
SU(2) invariance, even if the minimization conditions re-
main valid.

3 C P-violation
in the two-Higgs-doublet model

C P-transformation of the scalar doublet CPoP+Ct =

Cop ¢ (the phase factor |(cp| = 1) changes the sign
of the imaginary part Im(p] @) in the Ag-term of the
potential in (1), so if A5 # ¢, A¢ #0 and & #0, CP-
symmetry is broken there explicitly. In other words, the
dimension two terms of (1) appear with the complex para-
meter 2y

A5
® [0 02 + @3 1 — vivacost)?

4
/\6
+ T [—i(eTp2 — 03 ¢1) — v1v251n§]
As e
= (4 ) (o1 02)* + (3 ¢1)?]
)\
+ 901 902802 ¥1
_ 11}2 —= (A5c08€ — iAgsiné) 7 po
- T()\50085 +1iAgsiné) ey o1, (35)
so we find
:U’%Q = Ul 2 ——=(A5c08E — iAgsing). (36)

2
CP is (softly) broken by the u%5p7 oo+ /312 ©F p1-terms.
In this special case when the same phase £ is involved
both in the potential and the vacuum expectation value
of @9, the diagonalization and minimization of the CP-
transformed potential become less transparent. It is more
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convenient to analyze the potential form (21) for the gen-
eral case of complex parameters with arbitrary phases.
In the following we shall consider the hermitian potential
which is the generalization of (21):

*

U(p1,02) = { — (et o1)— 13 (©f 1) — 133 p2)

% DN =

5 (wéﬂpz)} — 135 (0F 02)— 1is (93 ¢1)

P1(<ﬁ¢1)2+ AL (9F@1)% 4 293 @2)?

+
N = =
o

+ X2 (93 ¢2)?
+ As(pf 01) (93 2)+ As (0f 1) (03 02)

+ Mefe2) (03 1)+ A (f @2) (05 1)

*

A A
+ S (e o)l p2) + 5

: 2 (eF e)(efe)

+ X6 (01 1) (@7 2)+ As (0 1) (03 1)

+ A3 02) (9 p2)+ A7 (93 92) (03 1); (37)
a denotes the complex conjugated of a. The potential
terms with complex parameters u3, and A5, Ag, A7 explic-
itly violate C P-invariance. With the help of U(1)y hyper-
charge symmetry of the model the phases ¢, and 057
of the complex parameters p3, and As,6,7 can be removed
by the phase rotation of scalar doublets ¢ 2. In the case
when v in (3) is taken real and positive, and 7 is the
overall phase of the o doublet, the conditions to remove
the explicit phases from the potential are [20]

0, —n=mn,m, 05—2n=nsm,
06,7 — 1 = ne,7m, (38)
where n,, n; (i = 5,6,7) are arbitrary integer numbers.
Or equivalently, in terms of complex parameters the con-
ditions for the absence of explicit C P-violation in the ef-
fective potential (37) are [5]

Im(/u’éll2 5‘5) = 0, Im(ﬂ’%? 5‘6) = Ov

Im(pf, A7) = 0. (39)
The phase of complex u2, can always be rotated away, so
13, can be taken real. In the scenario of fine-tuning for
the phases, when the conditions (38) or (39) are satisfied,
the \; are also real. Otherwise \; will be redefined after a
phase rotation, keeping explicitly C P-violating terms.

If the phases of u?,, \; are rotated away so there
are no explicitly C'P-non-invariant potential terms, C'P-
invariance can nevertheless be broken spontaneously. Us-
ing the convention that v; and vy in (3) are real and pos-
itive and selecting the ¢ phase-dependent terms of (37),
which are of the form acos®¢ + beos€, where a = A\sviv3 /2
and b = (A\gv?/2+ A\7v3 /2 — p25)v1v9 (0 < € < ), one can
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find their minimum (see the appendix of [20]) at A5 > 0
and

v o v o
U3y — E)\Gc?@ — 5/\75%
cosé = = (40)
Asv2s5cg
(the spemal case pf, = 0 was found in [1,3]). If | u%, —

(v?/2) X6 — (v2/2) )\752 |> Asv2spes, then the sponta-
neously C@P v1olat1ng extremum does not exist and the
minimum of the potential occurs at the endpoints cos =
£1. For b > 0 the minimum is at £ = 7 and for b < 0 the
minimum is at £ = 0. If A5 < 0, the extremum inside the
interval |cos{| < 1 is the maximum, so the local minima
are at the endpoints £ = 0, 7. The case £ = 0 is reduced to
the case ¢ = 7 by the change of sign for A, A7, 25 (change
of sign for the b). The special case of C' P-conservation oc-
curs at £ = 7/2 when p2, = (02/2)5\60% + (02/2)5\75%. In
this case, of purely imaginary (ys) [21], our diagonaliza-
tion procedure must be reconsidered. For instance, CP-
even Higgs mass eigenstates are formed in this case by
different orthogonal linear combinations of the real and
imaginary parts of the scalar doublets, Rey; and Imgps.

The substitution of (26) into the no-extremum con-
dition |u?, — (02/2))\(;?% — (v*/2)A7s3] > Asv®spes gives
m124 >0. In the case A5 < 0 the absolute minimum of
the potential occurs at & = 0 (but not & = ) if p2, —
(02/2)5\602 — (v 2/2))\73 > 0, which gives, in combination
with (26), m?% >| A5 | 112. Even if A5 is of the order of
1, the latter condition is valid when m 4 is in the mass
range of the order of or greater than v. In the case of real
parameters u2,, \;, it is not straightforward to combine
spontaneous C P-violation with our procedure of diagonal-
ization. In the case of complex parameters the situation
may be changed. The extremum conditions can be found
from the study of the fourth power equation with the coef-
ficients depending on the real and imaginary parts of u3,,
A;. Nevertheless we are not going to consider spontaneous
C P-violation further on. With real parameters ji%,, A; and
in the absence of spontaneous C' P-violation the minimum
of the potential (37) can be taken at £ = 0. At the same
time, insofar as the physical motivation of the fine-tuning
conditions (38) and (39) for C'P-conservation is not avail-
able, in the following we consider the general case of di-
agonalization and minimization of the two-Higgs-doublet
potential with complex parameters.

For the diagonalization of (37) in the ground state we
used the ansatz (22)-(28) to be taken for the real parts
of the parameters. The real part of the parameter Uy is
expressed through the real parts of A5 ¢ 7 using (26):

Repty = m¥spes (41)

_ 1 _ 1 _
+ 02 (sﬁclgRe)\s + ic%Re)\G + 2S%Re/\7> ,

defining also the real parts of A1 234 and p?, p3 by means
of (22)-(25), and (27) and (28). The substitution of com-
plex u; and JA; into the potential (37) leads to the linear
term and the non-diagonal mass term which are depen-
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dent on the imaginary parts of u2,, \;:

U(p1,p2) = coA+c1thA+c HA

2 2 2

+ third and fourth order terms in h, H, A, H*,

where

v3 T < <
co = —vImp?, + ?350311&1)\5 + ?(C%Im/\ﬁ + S%Imx\7),
2 v? 3
1 = —Sq—plmpis + —(s2850—3 — 2¢a+p5)ImAs

4
v? -
- 5(5505%_5 —3sq4¢3)ImAg
v? _
+ ?(550[36&_5 — 3casp)ImAy,

2
v _
Ccy = ca_glmqu + Z(CQﬁsa_ﬁ — 3Sa+p)ImAs
02 _
_ E(C%Ca_ﬂ + QCQC[;)IIH/\G
2

- %(s%ca_g + 25485)ImA7. (43)

In the case of the C'P-conservation of (38) and (39), the
linear and non-diagonal second order terms hA and H A do
not appear because all imaginary parts of the parameters
can be removed. The linear term in A demonstrates that
after the introduction of complex couplings we may find
ourselves to be out of a local minimum of the potential

U(QD1, 902)'

The minimization condition for the imaginary parts
¢o = 0 must be imposed. If \;, i = 5,6,7 are zero (this
occurs in THDM if we additionally introduce a global
U(1)q symmetry, softly broken by the dimension two u3,-
term [22]), the imaginary part of u?, can be removed by
a phase rotation of ¢s, so the tree-level potential is C'P-
invariant. In the general THDM with non-zero parameters
the phase rotation of ¢o which removes Imyu?, redefines
Ai, i = 5,6,7. These simple observations for the THDM
potential isolated from any other physical fields are no
longer trivial if, keeping in mind the MSSM, we switch
on the interaction of ¢; and yo with scalar quarks. C'P-
invariance of the latter is (softly) broken by the dimen-
sion three terms with the Higgs mixing parameter p and
the trilinear parameters A, ; of the form flyzAb7tcp?72zj§ch,
ufz,lcp(f_’QquqNR (q=t, b; @?72 are the neutral components of
the Higgs doublets, f12 = \/ingb,t/vl,g). Then the quartic
scalar interaction parameters \;, ¢ = 5,6,7, are affected
by radiative corrections from the one-loop diagrams with
scalar quarks of the order of p?A%/My gy, p*A/Mygy
and pA3/Myey [5], so the phases of \;, i = 5,6,7, are
defined by the phases of the complex p and A, thus con-
straining the phase of ;25 in powers of the conditions (41)
and (43). In the case of the Born level MSSM potential
with a global U(1)q symmetry when \; = 0 (i = 5,6,7)
the complex u?, parameter can still appear beyond the
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tree-level due to the same CP-violating Yukawa interac-
tions of the scalar quarks with the Higgs fields. This pos-
sibility of the u?, phase induced in higher orders by radia-
tive corrections calculated diagrammatically has been con-
sidered in [23]. The restoration of the potential minimum
can be achieved by means of the opposite sign quantum
correction term, originating from the tadpole diagrams
with the pseudoscalar A connected to the squark loops?.
In the classical minimum ¢y = 0 we find

’U2

c = ?(sas% — cac%)lmj\g)
+ v2(s0csTmAg — cos3ImAy),
v? 3 3 3
Co = 7?(50[05 + casp)ImAs

— v*(CacsImAg + 8455TmA7). (44)

The second order terms hA and HA in (42) can be re-
moved as usual by the orthogonal rotation a;; (i,j =
1,2,3) in h, H, A sector

h
(h,H,A) M* | H
A

h1
= (h1,ha,h3) ajp My aij | he |, (45)
hs
where the mass matrix has the form
m% 0
M? = 3 0 m% ¢ (46)

C1 Co mj%\

The squared masses of the physical states hy, ho, hz, which
are the Higgs bosons without definite C' P-parity, are de-
fined by the eigenvalues of the mass matrix M? (the roots
of the cubic equation for the eigenvalues are given by the
Cardano formulae):

where

0= arccos#7
Vi-a)

1
r = —(9ajas — 27ag — 2a3),

1 2
54 q= §(3Q1—&2),

2 However, with non-zero As, A\¢ and M7, the factor of the
scalar—pseudoscalar Higgs counterterm is not explicitly propor-
tional to the tadpole renormalization constant, or the tadpole
parameter co
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2. 2 2 2 2 2 2
ag = Mg + CoMyp, — My MM 4,
2 2 2 2 2 2 2 2
MMy + Mmpmiy +Mmygmy — € — C3,
_ m%[

aj
as = —mj —m3.

One can see that in the limiting case of a C'P-conserving
potential ¢; 2 — 0 the following correspondence occurs:
Mp, — Mp, Mp, — My and mp, — m4. The normalized
eigenvectors of the matrix M2, which are at the same time
the matrix elements of a;;, (h, H,A) = a;;h;, have the
form a;; = a;j/nj, where

ayy = ((my —mp, )(m% —mi) —c3), ay = cios,
azy = —ci(myy —m3,),

@iy = c1ea,  agy = ((mf, —mi,)(m% —mj,) — ),
aéz = —co(m} — miz)7

ayz = —cr(mir —mj,), a4y = —cs(mj, —mj,),

!
Qg3 = (m% - mi3)(m§{ - mis)

and n; = (a2 + a2 + a:2)'/? 3. Representations for the
triple and quartic Higgs boson self interactions in the case
of C'P-violating potential are given by the expansions of
the structures a;;h;a;phragh;, and a;jhjahraghic;m
hm; they are bulky and not very telling, so we do not
show them here. If the imaginary parts of Ag and \; are
not small, large off-diagonal elements of the mixing ma-
trix a;; could appear, leading to significant mass splittings
of the Higgs states and modifications of the Higgs boson
interactions.

We assume that in the Yukawa sector (¢1) couples only
to down fermions:

> Viere———

a=d,s,b
X [1h1 (1 + ¥5)P2ap1 + Yaa (1 — v5)01907 ],

48
Q\fmwswcﬁ ( )

where (h, H,A) = a;;h;, for the first generation quarks
1 = {a, Vudd+Vuss+Vubb} aq = (d, s,b) and analogous
terms for the ¢ and ¢ quarks (Vg denotes the CKM matrix
elements), and (p2) couples only to up fermions (model of
type II [24]):

€My,
Q\fmwswsB
+1a(1 — 75)1T2¢1<P2}7

{1/)1(1 + 75)iTatb2py
(49)

where again the physical hq, ha, hs states are introduced
by means of the a;; rotation, ¥1 = {a, Vad+Viys5+ Vbl
12 = u and analogous terms for the ¢ and ¢ quarks.

3 No ordering of the masses mu, < mn, < Mp; is required. If
we want to keep this ordering, then a;; written above, valid for
the case muy > ma, must be changed. For the case myg < ma
one should replace mp, <> mp, and change the sign of a;2, a:3
in the expressions for a;;
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4 Higgs—gauge boson
and Higgs—fermion couplings in the MSSM
with explicit C P-violation

In the following we shall focus on the MSSM scenario for
the two-Higgs-doublet model, which allows us to restrict
strongly the THDM parameter space. It is not the only one
possible; standard model-like scenarios in the general two-
Higgs-doublet model have been discussed in [25]. A de-
tailed consideration in the framework of MSSM has been
performed in [5] (see also [6]). In this section we would like
only to compare qualitatively our results with the results
of these approaches. Our calculation follows a somewhat
different scheme. In [5] the tree-level two-Higgs-doublet
potential is C'P-invariant. The phase & of u?, is radia-
tively induced by the tadpole diagrams and can be ab-
sorbed in the definition of the p parameter which appears
in the stop mixing matrix off-diagonal element A; —pu/tgs.
The As-, A¢- and As-terms are also radiatively induced
by the threshold effects. At the same time the trilinear
couplings Ay, A, also carry a phase?, so both the radia-
tively induced and the trilinear phases contribute to the
phase arg(puA) of the As-, Ag- and A7-terms. We do not
account for the radiatively induced phase which is calcu-
lated diagrammatically. In the case under consideration
the fine-tuning conditions (38) and (39) are not fulfilled,
so C P-invariance of the two-doublet potential is explicitly
broken by complex parameters at the tree level. The real
and imaginary parts of the parameter u2, are defined by
means of the condition (41) for the real parts of the para-
meters A5 ¢,7 and the minimization condition (43) (where
¢o = 0) for their imaginary parts. In the following calcu-
lations the complex parameters 5\5,677 are specified in the
framework of the MSSM.

We used the two-loop symbolic results for \;, i =

-,7, which were obtained in the RG approach [17]
and extended to the case of C'P-violation in [5]. The para-
meters A5, Ag and A7 are non-zero in the next-to-leading
order approximation (RG improved leading order approx-
imation), so using (41) and (43)

Repty, = mspcs
- 1 - 1 -
+ v? <5505Re)\5 + ic%Re/\(; + 25%Re>\7) , (50)

2

Iy, = %(856511115\5 + c3ImAg + s3ImA7), (51)

where 5\5’6,7 depend on the finite term corrections to the
leading logarithmic result which appear from the one-loop
diagrams with trilinear couplings. The analytical represen-
tation of [5] has the form

< 3 2A2 1
N T 4 J\Zs St {1 ko (2h3 — 6h? + 169;%)15}
USY
3 u?A? 1
~ Tog7 thé Sb 1= 163 (2h} — 6h + 16g2)t| ,
USYy

4 For a rewiev see e.g. [26]
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67 g6r2"t Mé‘USY parameters of the two-doublet-Higgs potential are defined
1 7 15 by tgfB, the SUSY scale Msysy, and six relevant para-
X {1 ~ 6.2 <2h§ — ?hf + 1693) t} meters in the sector of the Higgs boson interaction with
g the third generation squarks: p, arg(u), Ay, arg(A4;), Ay,
3 ph 64,  |A[*A arg(Ap). In the following consideration for simplicity we
9672 Msusy \ Msusy  M3ysy assume |A;| = |A4,] and assign the universal phase 6 to uA;
1 1 9 and pAp so that 6 = arg(uA;) = arg(pAp). Then using the
X {1 ~ 162 <2hf - §h12, + 1Ggf> t} ) explicit structure of (50), the CP-invariance conditions
™ 2
~ 3 lulPuds (39) can be rewritten in the form Im(zl12 pA) =0 [5].
A7 = 962 A The couplings of W and Z bosons to the hq, hso, hs
oo SUsy scalars have the form
1 7T 4 15 4 9
x 1= 1672 <2ht - ?hb + 1695 | t Vi Vi by v (Ca—pasi — sa—pair),
i 3 . m 6A; |At|2At Vp, Vo ha nguV(cafBa22 - Safﬂa12)7
T 9672 " Mgusy (MSUSY - MSUSY) ViV hs Jvguv(Ca—pass — sa—pais),
L (L 9 o), Ly where V = W. 2, fiy = (e/sw)my and fz = (e/(sweh,)
Xt 1672 \ 2% 't + 16g; : (52) myy . The couplings of the hy, hy, hs bosons to the ¢t and b

A and p are the factors in front of Higgs—squark(left)—
squark(right) trilinear terms, Msygsy is the SUSY energy
scale, Mmyop, My are the on-shell running masses of the
third generation quarks, and ¢ = log(Mgygy/miop), he =
(V21muop)/(vs5), by = (V2my)/(vep), g5 = (4may)'/?.
The trilinear parameters A;, A, and p of the Higgs boson
interaction with the third generation squarks can be, gen-

quarks have the form

tth ft%(’saa21 + caa11 —icgasis),
tthy ft%(saaaQ + caaiz —icgasays),
_ 1 .

tths ft%(saal‘i + coa13 —icgassys),
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bbhy fb%(caaﬂ — SaQ11 — 153a3175),
bb hy fb%(caa22 — Sqa12 — 1Sgas27s),
_ 1 .

bb hs fb%(caa% — SaQ13 — 18a3375),

where fp = (—¢/(2sw))(mep/mw).

The Higgs boson mass spectrum of the C' P-conserving
limit § = 0 (in this limit a;; = diag{1,1,1}) is shown in
Fig.1. For the case of explicit C'P-violation in the two-
doublet-Higgs potential we take the parameter set pu =
-2 TeV, At = Ab = 71.8T€V, MSUSY = 0.5T6V, mag —
220 GeV, tgf = 4, which is typical for the region of MSSM
parameter space where the imaginary parts of A5, A\¢ and
A7 are large (of the order of 0.1-1) ®. We demonstrate in
Fig.2 the neutral Higgs boson masses given by (47) and
the mixing matrix elements a;; as a function of the univer-
sal phase 0 = arg(ptA:p). The Higgs boson masses of the
C P-conserving limit are substantially changed when the
phase 6 is not small. The my; in Fig. 2 is always smaller
than my, and myp, has a downfall at the phase values
around 7/4. The Higgs-vector boson WWh,;, ZZh; and

5 A detailed discussion of possible combined constraints on
the MSSM parameter space from cosmology, direct searches
and indirect measurements (rare decays) can be found in [27]

the Higgs—fermion qgh; (¢ = t,b) interaction vertices as
a function of the phase € are shown in Fig.3. One can
observe that the h; couplings to the gauge bosons W, Z
decrease by about 15% if the phase of A5, Ag, A7 is large
enough. Non-zero couplings of h3 to the gauge bosons ap-
pear. The changes of the bbh and the bbhs coupling regime
are also rather pronounced (see Fig.3). In the region of
MSSM parameter space where the my, is around 150-
250 GeV and the p and A;, parameters are of the order
of TeV, we have the regime of strong mixing in the Higgs
sector. As a result the light Higgs boson hy could have not
been observed at LEP2 (y/s = 200 GeV) in the produc-
tion channels ete™ — h1Z, ete™ — v..h1 because of
the suppressed couplings to the gauge bosons, while the
ho, hs bosons are sufficiently heavy to be not produced on
mass-shell at the LEP2 energy. A detailed analysis of this
scenario can be found in [5,6].

5 Triple and quartic Higgs boson couplings
in the MSSM with explicit C P-violation

In the regions of the MSSM parameter space where the
couplings of the lightest Higgs boson h; to the gauge
bosons and top quark are suppressed, the traditional chan-
nels of Higgs boson production by radiation from a W, Z
or t line and WW, ZZ fusion can have too small a rate to
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be experimentally observed. For this reason it is interest-
ing to consider the possibility of double Higgs production
(like g9 — ha — hihy) defined by the self-coupling ver-
tices. Such calculations are known in the C P-conserving
limit [8], when the cross sections of double and triple Higgs
boson production turn out to be very small. Only some of
them are accessible for observation at high luminosity col-
liders. In the case of C' P-violation some self-couplings may
be substantially increased, providing better opportunities
for the experimental reconstruction.

The A5, A\¢ and A7 potential terms can modify sig-
nificantly the Higgs boson self-interaction vertices calcu-
lated in the leading one-loop approximation with \; =
0 (i = 5,6,7). At the next-to-leading order approxima-
tion the A; couplings (50) include terms of the order of
hi 2 A7y /Mgygy and b uA; y/M3ygy, so they can reach
values of the order of 0.1-1 at moderate values of Mgysy
and p and A¢p taken at the TeV energy scale. For exam-
ple, in the C P-conserving limit § = 0 the hhh vertex in
the mass parameterization has the form

3e
mwsSws2p
+ 3o (As5Cpta + A6Cgsa — Arsgca)v?].

Ihhh = [—(cpc) — spsd)mi + szacﬁwcm,%l

(53)

The contributions of the 5\5,677—terms and the mi7A—terms

in this expression are of the same order if A5 67 ~ O(1).
The rotation of the # = 0 mass eigenstates by the matrix

a;j defined by (45) gives the gpn,p,n, vertex a different
form but also it has substantial contributions of the A5 6 7-
terms.

Using the parameter set described in the previous sec-
tion, we show the values of various triple and quartic Higgs
boson self-interaction vertices as a function of the univer-
sal phase § = arg(uA;) = arg(udp) in Fig.4. The val-
ues of the Higgs boson self-interaction vertices in the C'P-
conserving limit § = 0,7 and in the leading order approx-
imation A5 = A\¢ = A7 = 0 are marked in Fig.4 by hori-
zontal arrows. The s, A\g and A7 potential terms induced
in the next-to-leading order approximation introduce very
large corrections to the triple and quartic self-interactions
of Higgs bosons. In the region of the MSSM parameter
space under consideration the difference of the leading or-
der and the next-to-leading order vertex factors can be
several times in some ranges of the phase variation.

6 Summary

We demonstrated the tree-level equivalence of the two-
Higgs-doublet model potentials (1) and (9), where CP-
invariance may be explicitly broken by the Ag-term in (1)
or by the complex p2,-, As-terms in (9). The parameters
Ai (Z = 1ﬂ"'36) of (1) and N’%a N%a N%% 5‘1 (Z = 13"'75)
of (9) are related by (10). In the case of real parameters
the diagonalization of the potential (9) in the ground state
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can be performed by means of the substitutions (14)—(20)
which express the \; and p?, p3 parameters through the
Higgs boson masses mp,, mmg, ma, M+, the mixing angles
a, (3 and the u?, parameter. In the general case the A\g and
A7 potential terms (21) should also be considered with the
diagonalization and minimization conditions (22)-(28). If
the complex parameters u?, u3, \; (i =1,---,7) and p3,
are introduced, C P-invariance of the hermitian potential
(37) is explicitly violated at the tree level unless the fine-
tuning conditions (38) or (39) for the parameters are satis-
fied. So in the following we consider the problem of diago-
nalization in the local minimum for the two-Higgs-doublet
potential which is not C'P-invariant. For the diagonaliza-
tion of the potential (37) again we use the substitution
(22)—(28) to be taken for real parts of parameters. The
minimization of potential (37) at the tree level occurs with
the condition ¢y = 0 (43) for the imaginary parts of para-
meters. The imaginary parts of A5, A\g and A7 give rise
to the C'P-odd/C P-even Higgs boson off-diagonal terms,
which are removed by the orthogonal rotation in (h, H, A)
space, giving mass eigenstates hi, ho, hs without definite
C P-parity and with the mass spectrum and couplings
substantially different from the masses and couplings of
the CP-even and C'P-odd states h, H, A, if the imaginary
parts of the parameters A5, A\g and A7 are sufficiently large.

In the framework of MSSM the real parts of the \; (i =
1,---,5) parameters are fixed at the SUSY energy scale by
the conditions (29). Radiative corrections to the A$USY
(i =1,---,7) parameters are generated at the my, energy

ing order approximation Xs = X =

arg(p A) A =0

scale. Equations (31)—(33) express the mixing angle o and
the masses of the Higgs bosons in terms of the radiative
corrections to A$YSY (i = 1,---,7) couplings (e.g. given
by the RG evolution). They are valid independently on
the particular scheme which is used for the calculation of
the radiative corrections to the Xl-SUSY (i=1,---,7).

In the next-to-leading order approximation the com-
plex A5, A\¢ and A\; parameters are generated by the soft
C P-violating Yukawa interactions of Higgs bosons with
the scalar quarks. Using the results of [5] we calculated the
Higgs—gauge boson, Higgs—fermion and the Higgs triple
and quartic couplings for a representative MSSM para-
meter set, when the off-diagonal elements of the Higgs
boson mixing matrix are large. The A5, A¢ and A; para-
meters introduce significant corrections to the Higgs self-
interaction, even in the case when their effects on the
Higgs—gauge boson and Higgs—fermion couplings are
rather small. These corrections could rather strongly (by
one-two orders of magnitude in comparison with the case
of C' P-conservation) enhance or suppress some channels of
multiple Higgs boson production at future colliders, pro-
viding discriminative tests of C'P-violation in the Higgs
sector and improved feasibility to reconstruct experimen-
tally the Higgs potential.
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